Calcula
15\sqrt{5}+19\sqrt{2}\approx 60,411077348
Factoritzar
15 \sqrt{5} + 19 \sqrt{2} = 60,411077348
Compartir
Copiat al porta-retalls
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{\left(2\sqrt{10}-3\right)\left(2\sqrt{10}+3\right)}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
Racionalitzeu el denominador de \frac{31\sqrt{2}+31\sqrt{5}}{2\sqrt{10}-3} multiplicant el numerador i el denominador per 2\sqrt{10}+3.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{\left(2\sqrt{10}\right)^{2}-3^{2}}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
Considereu \left(2\sqrt{10}-3\right)\left(2\sqrt{10}+3\right). La multiplicació es pot transformar en una diferència de quadrats fent servir la regla: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{2^{2}\left(\sqrt{10}\right)^{2}-3^{2}}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
Expandiu \left(2\sqrt{10}\right)^{2}.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{4\left(\sqrt{10}\right)^{2}-3^{2}}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
Calculeu 2 elevat a 2 per obtenir 4.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{4\times 10-3^{2}}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
L'arrel quadrada de \sqrt{10} és 10.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{40-3^{2}}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
Multipliqueu 4 per 10 per obtenir 40.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{40-9}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
Calculeu 3 elevat a 2 per obtenir 9.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}}{3-2\sqrt{10}}
Resteu 40 de 9 per obtenir 31.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{\left(3-2\sqrt{10}\right)\left(3+2\sqrt{10}\right)}
Racionalitzeu el denominador de \frac{62\sqrt{2}}{3-2\sqrt{10}} multiplicant el numerador i el denominador per 3+2\sqrt{10}.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{3^{2}-\left(-2\sqrt{10}\right)^{2}}
Considereu \left(3-2\sqrt{10}\right)\left(3+2\sqrt{10}\right). La multiplicació es pot transformar en una diferència de quadrats fent servir la regla: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{9-\left(-2\sqrt{10}\right)^{2}}
Calculeu 3 elevat a 2 per obtenir 9.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{9-\left(-2\right)^{2}\left(\sqrt{10}\right)^{2}}
Expandiu \left(-2\sqrt{10}\right)^{2}.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{9-4\left(\sqrt{10}\right)^{2}}
Calculeu -2 elevat a 2 per obtenir 4.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{9-4\times 10}
L'arrel quadrada de \sqrt{10} és 10.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{9-40}
Multipliqueu 4 per 10 per obtenir 40.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\frac{62\sqrt{2}\left(3+2\sqrt{10}\right)}{-31}
Resteu 9 de 40 per obtenir -31.
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}-\left(-2\sqrt{2}\left(3+2\sqrt{10}\right)\right)
Dividiu 62\sqrt{2}\left(3+2\sqrt{10}\right) entre -31 per obtenir -2\sqrt{2}\left(3+2\sqrt{10}\right).
\frac{\left(31\sqrt{2}+31\sqrt{5}\right)\left(2\sqrt{10}+3\right)}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
El contrari de -2\sqrt{2}\left(3+2\sqrt{10}\right) és 2\sqrt{2}\left(3+2\sqrt{10}\right).
\frac{62\sqrt{10}\sqrt{2}+93\sqrt{2}+62\sqrt{5}\sqrt{10}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Per aplicar la propietat distributiva, cal multiplicar cada terme de l'operació 31\sqrt{2}+31\sqrt{5} per cada terme de l'operació 2\sqrt{10}+3.
\frac{62\sqrt{2}\sqrt{5}\sqrt{2}+93\sqrt{2}+62\sqrt{5}\sqrt{10}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Aïlleu la 10=2\times 5. Torna a escriure l'arrel quadrada del producte \sqrt{2\times 5} com a producte d'arrel quadrada \sqrt{2}\sqrt{5}.
\frac{62\times 2\sqrt{5}+93\sqrt{2}+62\sqrt{5}\sqrt{10}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Multipliqueu \sqrt{2} per \sqrt{2} per obtenir 2.
\frac{124\sqrt{5}+93\sqrt{2}+62\sqrt{5}\sqrt{10}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Multipliqueu 62 per 2 per obtenir 124.
\frac{124\sqrt{5}+93\sqrt{2}+62\sqrt{5}\sqrt{5}\sqrt{2}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Aïlleu la 10=5\times 2. Torna a escriure l'arrel quadrada del producte \sqrt{5\times 2} com a producte d'arrel quadrada \sqrt{5}\sqrt{2}.
\frac{124\sqrt{5}+93\sqrt{2}+62\times 5\sqrt{2}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Multipliqueu \sqrt{5} per \sqrt{5} per obtenir 5.
\frac{124\sqrt{5}+93\sqrt{2}+310\sqrt{2}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Multipliqueu 62 per 5 per obtenir 310.
\frac{124\sqrt{5}+403\sqrt{2}+93\sqrt{5}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Combineu 93\sqrt{2} i 310\sqrt{2} per obtenir 403\sqrt{2}.
\frac{217\sqrt{5}+403\sqrt{2}}{31}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Combineu 124\sqrt{5} i 93\sqrt{5} per obtenir 217\sqrt{5}.
7\sqrt{5}+13\sqrt{2}+2\sqrt{2}\left(3+2\sqrt{10}\right)
Dividiu cada terme de 217\sqrt{5}+403\sqrt{2} entre 31 per obtenir 7\sqrt{5}+13\sqrt{2}.
7\sqrt{5}+13\sqrt{2}+6\sqrt{2}+4\sqrt{10}\sqrt{2}
Utilitzeu la propietat distributiva per multiplicar 2\sqrt{2} per 3+2\sqrt{10}.
7\sqrt{5}+13\sqrt{2}+6\sqrt{2}+4\sqrt{2}\sqrt{5}\sqrt{2}
Aïlleu la 10=2\times 5. Torna a escriure l'arrel quadrada del producte \sqrt{2\times 5} com a producte d'arrel quadrada \sqrt{2}\sqrt{5}.
7\sqrt{5}+13\sqrt{2}+6\sqrt{2}+4\times 2\sqrt{5}
Multipliqueu \sqrt{2} per \sqrt{2} per obtenir 2.
7\sqrt{5}+13\sqrt{2}+6\sqrt{2}+8\sqrt{5}
Multipliqueu 4 per 2 per obtenir 8.
7\sqrt{5}+19\sqrt{2}+8\sqrt{5}
Combineu 13\sqrt{2} i 6\sqrt{2} per obtenir 19\sqrt{2}.
15\sqrt{5}+19\sqrt{2}
Combineu 7\sqrt{5} i 8\sqrt{5} per obtenir 15\sqrt{5}.
Exemples
Equació quadràtica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equació lineal
y = 3x + 4
Aritmètica
699 * 533
Matriu
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equació simultània
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciació
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integració
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}