Resoleu y (complex solution)
y=-\frac{10x^{2}}{-3x^{2}+10x-20}
x\neq 0\text{ and }x\neq \frac{5+\sqrt{35}i}{3}\text{ and }x\neq \frac{-\sqrt{35}i+5}{3}
Resoleu y
y=-\frac{10x^{2}}{-3x^{2}+10x-20}
x\neq 0
Resoleu x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{5}\left(\sqrt{y\left(40-7y\right)}+\sqrt{5}y\right)}{3y-10}\text{; }x=\frac{\sqrt{5}\left(-\sqrt{y\left(40-7y\right)}+\sqrt{5}y\right)}{3y-10}\text{, }&y\neq \frac{10}{3}\text{ and }y\neq 0\\x=2\text{, }&y=\frac{10}{3}\end{matrix}\right,
Resoleu x
\left\{\begin{matrix}x=\frac{\sqrt{5y}\left(\sqrt{40-7y}+\sqrt{5y}\right)}{3y-10}\text{; }x=\frac{\sqrt{5y}\left(-\sqrt{40-7y}+\sqrt{5y}\right)}{3y-10}\text{, }&y\neq \frac{10}{3}\text{ and }y\leq \frac{40}{7}\text{ and }y>0\\x=2\text{, }&y=\frac{10}{3}\end{matrix}\right,
Gràfic
Compartir
Copiat al porta-retalls
xy\times 3x+5y\times 4-5x\times 2x=10xy
La variable y no pot ser igual a 0, ja que la divisió per zero no s'ha definit. Multipliqueu els dos costats de l'equació per 5xy, el mínim comú múltiple de 5,x,y.
x^{2}y\times 3+5y\times 4-5x\times 2x=10xy
Multipliqueu x per x per obtenir x^{2}.
x^{2}y\times 3+20y-5x\times 2x=10xy
Multipliqueu 5 per 4 per obtenir 20.
x^{2}y\times 3+20y-5x^{2}\times 2=10xy
Multipliqueu x per x per obtenir x^{2}.
x^{2}y\times 3+20y-10x^{2}=10xy
Multipliqueu 5 per 2 per obtenir 10.
x^{2}y\times 3+20y-10x^{2}-10xy=0
Resteu 10xy en tots dos costats.
x^{2}y\times 3+20y-10xy=10x^{2}
Afegiu 10x^{2} als dos costats. Qualsevol valor més zero dóna com a resultat el mateix valor.
\left(x^{2}\times 3+20-10x\right)y=10x^{2}
Combineu tots els termes que continguin y.
\left(3x^{2}-10x+20\right)y=10x^{2}
L'equació té la forma estàndard.
\frac{\left(3x^{2}-10x+20\right)y}{3x^{2}-10x+20}=\frac{10x^{2}}{3x^{2}-10x+20}
Dividiu els dos costats per 3x^{2}-10x+20.
y=\frac{10x^{2}}{3x^{2}-10x+20}
En dividir per 3x^{2}-10x+20 es desfà la multiplicació per 3x^{2}-10x+20.
y=\frac{10x^{2}}{3x^{2}-10x+20}\text{, }y\neq 0
La variable y no pot ser igual a 0.
xy\times 3x+5y\times 4-5x\times 2x=10xy
La variable y no pot ser igual a 0, ja que la divisió per zero no s'ha definit. Multipliqueu els dos costats de l'equació per 5xy, el mínim comú múltiple de 5,x,y.
x^{2}y\times 3+5y\times 4-5x\times 2x=10xy
Multipliqueu x per x per obtenir x^{2}.
x^{2}y\times 3+20y-5x\times 2x=10xy
Multipliqueu 5 per 4 per obtenir 20.
x^{2}y\times 3+20y-5x^{2}\times 2=10xy
Multipliqueu x per x per obtenir x^{2}.
x^{2}y\times 3+20y-10x^{2}=10xy
Multipliqueu 5 per 2 per obtenir 10.
x^{2}y\times 3+20y-10x^{2}-10xy=0
Resteu 10xy en tots dos costats.
x^{2}y\times 3+20y-10xy=10x^{2}
Afegiu 10x^{2} als dos costats. Qualsevol valor més zero dóna com a resultat el mateix valor.
\left(x^{2}\times 3+20-10x\right)y=10x^{2}
Combineu tots els termes que continguin y.
\left(3x^{2}-10x+20\right)y=10x^{2}
L'equació té la forma estàndard.
\frac{\left(3x^{2}-10x+20\right)y}{3x^{2}-10x+20}=\frac{10x^{2}}{3x^{2}-10x+20}
Dividiu els dos costats per 3x^{2}-10x+20.
y=\frac{10x^{2}}{3x^{2}-10x+20}
En dividir per 3x^{2}-10x+20 es desfà la multiplicació per 3x^{2}-10x+20.
y=\frac{10x^{2}}{3x^{2}-10x+20}\text{, }y\neq 0
La variable y no pot ser igual a 0.
Exemples
Equació quadràtica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equació lineal
y = 3x + 4
Aritmètica
699 * 533
Matriu
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equació simultània
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciació
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integració
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}