Resoleu x
x=-3
x=-2
Gràfic
Compartir
Copiat al porta-retalls
\left(x-3\right)\times 2x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
La variable x no pot ser igual a cap dels valors 3,4, ja que la divisió per zero no s'ha definit. Multipliqueu els dos costats de l'equació per \left(x-4\right)\left(x-3\right), el mínim comú múltiple de x-4,x-3,x^{2}-7x+12.
\left(2x-6\right)x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Utilitzeu la propietat distributiva per multiplicar x-3 per 2.
2x^{2}-6x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Utilitzeu la propietat distributiva per multiplicar 2x-6 per x.
2x^{2}-6x+3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Utilitzeu la propietat distributiva per multiplicar x-4 per 3.
2x^{2}-3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Combineu -6x i 3x per obtenir -3x.
2x^{2}-3x-12+\left(x^{2}-7x+12\right)\times 4=30+5x^{2}-36x
Utilitzeu la propietat distributiva per multiplicar x-4 per x-3 i combinar-los com termes.
2x^{2}-3x-12+4x^{2}-28x+48=30+5x^{2}-36x
Utilitzeu la propietat distributiva per multiplicar x^{2}-7x+12 per 4.
6x^{2}-3x-12-28x+48=30+5x^{2}-36x
Combineu 2x^{2} i 4x^{2} per obtenir 6x^{2}.
6x^{2}-31x-12+48=30+5x^{2}-36x
Combineu -3x i -28x per obtenir -31x.
6x^{2}-31x+36=30+5x^{2}-36x
Sumeu -12 més 48 per obtenir 36.
6x^{2}-31x+36-30=5x^{2}-36x
Resteu 30 en tots dos costats.
6x^{2}-31x+6=5x^{2}-36x
Resteu 36 de 30 per obtenir 6.
6x^{2}-31x+6-5x^{2}=-36x
Resteu 5x^{2} en tots dos costats.
x^{2}-31x+6=-36x
Combineu 6x^{2} i -5x^{2} per obtenir x^{2}.
x^{2}-31x+6+36x=0
Afegiu 36x als dos costats.
x^{2}+5x+6=0
Combineu -31x i 36x per obtenir 5x.
a+b=5 ab=6
Per resoldre l'equació, el factor x^{2}+5x+6 amb la fórmula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Per cercar a i b, configureu un sistema per resoldre.
1,6 2,3
Com que ab és positiu, a i b tenen el mateix inici de sessió. Atès que a+b és positiu, a i b són positius. Llista de totes les parelles d'enters que donen 6 de producte.
1+6=7 2+3=5
Calculeu la suma de cada parell.
a=2 b=3
La solució és la parella que atorga 5 de suma.
\left(x+2\right)\left(x+3\right)
Torna a escriure l'expressió factoritada \left(x+a\right)\left(x+b\right) fent servir els valors obtinguts.
x=-2 x=-3
Per trobar solucions d'equació, resoleu x+2=0 i x+3=0.
\left(x-3\right)\times 2x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
La variable x no pot ser igual a cap dels valors 3,4, ja que la divisió per zero no s'ha definit. Multipliqueu els dos costats de l'equació per \left(x-4\right)\left(x-3\right), el mínim comú múltiple de x-4,x-3,x^{2}-7x+12.
\left(2x-6\right)x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Utilitzeu la propietat distributiva per multiplicar x-3 per 2.
2x^{2}-6x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Utilitzeu la propietat distributiva per multiplicar 2x-6 per x.
2x^{2}-6x+3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Utilitzeu la propietat distributiva per multiplicar x-4 per 3.
2x^{2}-3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Combineu -6x i 3x per obtenir -3x.
2x^{2}-3x-12+\left(x^{2}-7x+12\right)\times 4=30+5x^{2}-36x
Utilitzeu la propietat distributiva per multiplicar x-4 per x-3 i combinar-los com termes.
2x^{2}-3x-12+4x^{2}-28x+48=30+5x^{2}-36x
Utilitzeu la propietat distributiva per multiplicar x^{2}-7x+12 per 4.
6x^{2}-3x-12-28x+48=30+5x^{2}-36x
Combineu 2x^{2} i 4x^{2} per obtenir 6x^{2}.
6x^{2}-31x-12+48=30+5x^{2}-36x
Combineu -3x i -28x per obtenir -31x.
6x^{2}-31x+36=30+5x^{2}-36x
Sumeu -12 més 48 per obtenir 36.
6x^{2}-31x+36-30=5x^{2}-36x
Resteu 30 en tots dos costats.
6x^{2}-31x+6=5x^{2}-36x
Resteu 36 de 30 per obtenir 6.
6x^{2}-31x+6-5x^{2}=-36x
Resteu 5x^{2} en tots dos costats.
x^{2}-31x+6=-36x
Combineu 6x^{2} i -5x^{2} per obtenir x^{2}.
x^{2}-31x+6+36x=0
Afegiu 36x als dos costats.
x^{2}+5x+6=0
Combineu -31x i 36x per obtenir 5x.
a+b=5 ab=1\times 6=6
Per resoldre l'equació, el factor de l'esquerra l'ha agrupat. Primer, cal tornar a escriure el costat esquerre de la mà a x^{2}+ax+bx+6. Per cercar a i b, configureu un sistema per resoldre.
1,6 2,3
Com que ab és positiu, a i b tenen el mateix inici de sessió. Atès que a+b és positiu, a i b són positius. Llista de totes les parelles d'enters que donen 6 de producte.
1+6=7 2+3=5
Calculeu la suma de cada parell.
a=2 b=3
La solució és la parella que atorga 5 de suma.
\left(x^{2}+2x\right)+\left(3x+6\right)
Reescriviu x^{2}+5x+6 com a \left(x^{2}+2x\right)+\left(3x+6\right).
x\left(x+2\right)+3\left(x+2\right)
x al primer grup i 3 al segon grup.
\left(x+2\right)\left(x+3\right)
Simplifiqueu el terme comú x+2 mitjançant la propietat distributiva.
x=-2 x=-3
Per trobar solucions d'equació, resoleu x+2=0 i x+3=0.
\left(x-3\right)\times 2x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
La variable x no pot ser igual a cap dels valors 3,4, ja que la divisió per zero no s'ha definit. Multipliqueu els dos costats de l'equació per \left(x-4\right)\left(x-3\right), el mínim comú múltiple de x-4,x-3,x^{2}-7x+12.
\left(2x-6\right)x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Utilitzeu la propietat distributiva per multiplicar x-3 per 2.
2x^{2}-6x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Utilitzeu la propietat distributiva per multiplicar 2x-6 per x.
2x^{2}-6x+3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Utilitzeu la propietat distributiva per multiplicar x-4 per 3.
2x^{2}-3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Combineu -6x i 3x per obtenir -3x.
2x^{2}-3x-12+\left(x^{2}-7x+12\right)\times 4=30+5x^{2}-36x
Utilitzeu la propietat distributiva per multiplicar x-4 per x-3 i combinar-los com termes.
2x^{2}-3x-12+4x^{2}-28x+48=30+5x^{2}-36x
Utilitzeu la propietat distributiva per multiplicar x^{2}-7x+12 per 4.
6x^{2}-3x-12-28x+48=30+5x^{2}-36x
Combineu 2x^{2} i 4x^{2} per obtenir 6x^{2}.
6x^{2}-31x-12+48=30+5x^{2}-36x
Combineu -3x i -28x per obtenir -31x.
6x^{2}-31x+36=30+5x^{2}-36x
Sumeu -12 més 48 per obtenir 36.
6x^{2}-31x+36-30=5x^{2}-36x
Resteu 30 en tots dos costats.
6x^{2}-31x+6=5x^{2}-36x
Resteu 36 de 30 per obtenir 6.
6x^{2}-31x+6-5x^{2}=-36x
Resteu 5x^{2} en tots dos costats.
x^{2}-31x+6=-36x
Combineu 6x^{2} i -5x^{2} per obtenir x^{2}.
x^{2}-31x+6+36x=0
Afegiu 36x als dos costats.
x^{2}+5x+6=0
Combineu -31x i 36x per obtenir 5x.
x=\frac{-5±\sqrt{5^{2}-4\times 6}}{2}
Aquesta equació es troba en una fórmula estàndard: ax^{2}+bx+c=0. Substituïu 1 per a, 5 per b i 6 per c a la fórmula quadràtica \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 6}}{2}
Eleveu 5 al quadrat.
x=\frac{-5±\sqrt{25-24}}{2}
Multipliqueu -4 per 6.
x=\frac{-5±\sqrt{1}}{2}
Sumeu 25 i -24.
x=\frac{-5±1}{2}
Calculeu l'arrel quadrada de 1.
x=-\frac{4}{2}
Ara resoleu l'equació x=\frac{-5±1}{2} quan ± és més. Sumeu -5 i 1.
x=-2
Dividiu -4 per 2.
x=-\frac{6}{2}
Ara resoleu l'equació x=\frac{-5±1}{2} quan ± és menys. Resteu 1 de -5.
x=-3
Dividiu -6 per 2.
x=-2 x=-3
L'equació ja s'ha resolt.
\left(x-3\right)\times 2x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
La variable x no pot ser igual a cap dels valors 3,4, ja que la divisió per zero no s'ha definit. Multipliqueu els dos costats de l'equació per \left(x-4\right)\left(x-3\right), el mínim comú múltiple de x-4,x-3,x^{2}-7x+12.
\left(2x-6\right)x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Utilitzeu la propietat distributiva per multiplicar x-3 per 2.
2x^{2}-6x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Utilitzeu la propietat distributiva per multiplicar 2x-6 per x.
2x^{2}-6x+3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Utilitzeu la propietat distributiva per multiplicar x-4 per 3.
2x^{2}-3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Combineu -6x i 3x per obtenir -3x.
2x^{2}-3x-12+\left(x^{2}-7x+12\right)\times 4=30+5x^{2}-36x
Utilitzeu la propietat distributiva per multiplicar x-4 per x-3 i combinar-los com termes.
2x^{2}-3x-12+4x^{2}-28x+48=30+5x^{2}-36x
Utilitzeu la propietat distributiva per multiplicar x^{2}-7x+12 per 4.
6x^{2}-3x-12-28x+48=30+5x^{2}-36x
Combineu 2x^{2} i 4x^{2} per obtenir 6x^{2}.
6x^{2}-31x-12+48=30+5x^{2}-36x
Combineu -3x i -28x per obtenir -31x.
6x^{2}-31x+36=30+5x^{2}-36x
Sumeu -12 més 48 per obtenir 36.
6x^{2}-31x+36-5x^{2}=30-36x
Resteu 5x^{2} en tots dos costats.
x^{2}-31x+36=30-36x
Combineu 6x^{2} i -5x^{2} per obtenir x^{2}.
x^{2}-31x+36+36x=30
Afegiu 36x als dos costats.
x^{2}+5x+36=30
Combineu -31x i 36x per obtenir 5x.
x^{2}+5x=30-36
Resteu 36 en tots dos costats.
x^{2}+5x=-6
Resteu 30 de 36 per obtenir -6.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-6+\left(\frac{5}{2}\right)^{2}
Dividiu 5, el coeficient del terme x, per 2 per obtenir \frac{5}{2}. A continuació, sumeu el quadrat del nombre \frac{5}{2} als dos costats de l'equació. Aquest pas fa que el costat esquerre de l'equació sigui un quadrat perfecte.
x^{2}+5x+\frac{25}{4}=-6+\frac{25}{4}
Per elevar \frac{5}{2} al quadrat, eleveu al quadrat el numerador i el denominador de la fracció.
x^{2}+5x+\frac{25}{4}=\frac{1}{4}
Sumeu -6 i \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4}
Factor x^{2}+5x+\frac{25}{4}. En general, quan x^{2}+bx+c és un quadrat perfecte, sempre es pot tenir en compte com \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Calculeu l'arrel quadrada als dos costats de l'equació.
x+\frac{5}{2}=\frac{1}{2} x+\frac{5}{2}=-\frac{1}{2}
Simplifiqueu.
x=-2 x=-3
Resteu \frac{5}{2} als dos costats de l'equació.
Exemples
Equació quadràtica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equació lineal
y = 3x + 4
Aritmètica
699 * 533
Matriu
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equació simultània
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciació
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integració
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}