Ves al contingut principal
Calcula
Tick mark Image
Diferencieu m
Tick mark Image

Problemes similars de la cerca web

Compartir

\frac{2mn}{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}+\frac{2m}{\left(m+n\right)\left(m-n\right)}-\frac{1}{m-n}
Aïlleu la m^{3}+n^{3}. Aïlleu la m^{2}-n^{2}.
\frac{2mn\left(m-n\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}+\frac{2m\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}-\frac{1}{m-n}
Per afegir o restar les expressions, amplieu-les perquè els denominadors coincideixin. El mínim comú múltiple de \left(m+n\right)\left(m^{2}-mn+n^{2}\right) i \left(m+n\right)\left(m-n\right) és \left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right). Multipliqueu \frac{2mn}{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)} per \frac{m-n}{m-n}. Multipliqueu \frac{2m}{\left(m+n\right)\left(m-n\right)} per \frac{m^{2}-mn+n^{2}}{m^{2}-mn+n^{2}}.
\frac{2mn\left(m-n\right)+2m\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}-\frac{1}{m-n}
Com que \frac{2mn\left(m-n\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)} i \frac{2m\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)} tenen el mateix denominador, afegiu-los mitjançant l'addició dels seus numeradors.
\frac{2m^{2}n-2mn^{2}+2m^{3}-2m^{2}n+2mn^{2}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}-\frac{1}{m-n}
Feu les multiplicacions a 2mn\left(m-n\right)+2m\left(m^{2}-mn+n^{2}\right).
\frac{2m^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}-\frac{1}{m-n}
Combineu els termes similars de 2m^{2}n-2mn^{2}+2m^{3}-2m^{2}n+2mn^{2}.
\frac{2m^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}-\frac{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}
Per afegir o restar les expressions, amplieu-les perquè els denominadors coincideixin. El mínim comú múltiple de \left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right) i m-n és \left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right). Multipliqueu \frac{1}{m-n} per \frac{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}.
\frac{2m^{3}-\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}
Com que \frac{2m^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)} i \frac{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)} tenen el mateix denominador, resteu-los mitjançant la subtracció dels seus numeradors.
\frac{2m^{3}-m^{3}+m^{2}n-mn^{2}-nm^{2}+n^{2}m-n^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}
Feu les multiplicacions a 2m^{3}-\left(m+n\right)\left(m^{2}-mn+n^{2}\right).
\frac{m^{3}-n^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}
Combineu els termes similars de 2m^{3}-m^{3}+m^{2}n-mn^{2}-nm^{2}+n^{2}m-n^{3}.
\frac{\left(m-n\right)\left(m^{2}+mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}
Calculeu les expressions que encara no s'hagin calculat a \frac{m^{3}-n^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}.
\frac{m^{2}+mn+n^{2}}{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}
Anul·leu m-n tant al numerador com al denominador.
\frac{m^{2}+mn+n^{2}}{m^{3}+n^{3}}
Expandiu \left(m+n\right)\left(m^{2}-mn+n^{2}\right).