Ves al contingut principal
Calcula
Tick mark Image
Diferencieu b
Tick mark Image

Problemes similars de la cerca web

Compartir

\left(2b^{3}\right)^{1}\times \frac{1}{-6b^{9}}
Utilitzeu les regles dels exponents per simplificar l'expressió.
2^{1}\left(b^{3}\right)^{1}\times \frac{1}{-6}\times \frac{1}{b^{9}}
Per elevar el producte de dos o més nombres a una potència, eleveu cada nombre a la potència i resteu-ne el producte.
2^{1}\times \frac{1}{-6}\left(b^{3}\right)^{1}\times \frac{1}{b^{9}}
Utilitzeu la propietat commutativa de la multiplicació.
2^{1}\times \frac{1}{-6}b^{3}b^{9\left(-1\right)}
Per elevar una potència a una altra potència, multipliqueu-ne els exponents.
2^{1}\times \frac{1}{-6}b^{3}b^{-9}
Multipliqueu 9 per -1.
2^{1}\times \frac{1}{-6}b^{3-9}
Per multiplicar potències de la mateixa base, sumeu-ne els exponents.
2^{1}\times \frac{1}{-6}b^{-6}
Sumeu els exponents 3 i -9.
2\times \frac{1}{-6}b^{-6}
Eleveu 2 a la potència 1.
2\left(-\frac{1}{6}\right)b^{-6}
Eleveu -6 a la potència -1.
-\frac{1}{3}b^{-6}
Multipliqueu 2 per -\frac{1}{6}.
\frac{2^{1}b^{3}}{\left(-6\right)^{1}b^{9}}
Utilitzeu les regles dels exponents per simplificar l'expressió.
\frac{2^{1}b^{3-9}}{\left(-6\right)^{1}}
Per dividir potències de la mateixa base, resteu l'exponent del denominador de l'exponent del numerador.
\frac{2^{1}b^{-6}}{\left(-6\right)^{1}}
Resteu 9 de 3.
-\frac{1}{3}b^{-6}
Redueix la fracció \frac{2}{-6} al màxim extraient i anul·lant 2.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{2}{-6}b^{3-9})
Per dividir potències de la mateixa base, resteu l'exponent del denominador de l'exponent del numerador.
\frac{\mathrm{d}}{\mathrm{d}b}(-\frac{1}{3}b^{-6})
Feu l'aritmètica.
-6\left(-\frac{1}{3}\right)b^{-6-1}
La derivada d'un polinomi és la suma de les derivades dels seus termes. La derivada d'un terme constant és 0. La derivada de ax^{n} és nax^{n-1}.
2b^{-7}
Feu l'aritmètica.