Ves al contingut principal
Resoleu x
Tick mark Image
Gràfic

Problemes similars de la cerca web

Compartir

2+xx=x+4
La variable x no pot ser igual a 0, ja que la divisió per zero no s'ha definit. Multipliqueu els dos costats de l'equació per 2x, el mínim comú múltiple de x,2,2x.
2+x^{2}=x+4
Multipliqueu x per x per obtenir x^{2}.
2+x^{2}-x=4
Resteu x en tots dos costats.
2+x^{2}-x-4=0
Resteu 4 en tots dos costats.
-2+x^{2}-x=0
Resteu 2 de 4 per obtenir -2.
x^{2}-x-2=0
Totes les equacions amb la fórmula ax^{2}+bx+c=0 es poden resoldre utilitzant la fórmula quadràtica següent: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La fórmula quadràtica ofereix dues solucions: una quan ± és una suma i una altra quan és una resta.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-2\right)}}{2}
Aquesta equació es troba en una fórmula estàndard: ax^{2}+bx+c=0. Substituïu 1 per a, -1 per b i -2 per c a la fórmula quadràtica \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+8}}{2}
Multipliqueu -4 per -2.
x=\frac{-\left(-1\right)±\sqrt{9}}{2}
Sumeu 1 i 8.
x=\frac{-\left(-1\right)±3}{2}
Calculeu l'arrel quadrada de 9.
x=\frac{1±3}{2}
El contrari de -1 és 1.
x=\frac{4}{2}
Ara resoleu l'equació x=\frac{1±3}{2} quan ± és més. Sumeu 1 i 3.
x=2
Dividiu 4 per 2.
x=-\frac{2}{2}
Ara resoleu l'equació x=\frac{1±3}{2} quan ± és menys. Resteu 3 de 1.
x=-1
Dividiu -2 per 2.
x=2 x=-1
L'equació ja s'ha resolt.
2+xx=x+4
La variable x no pot ser igual a 0, ja que la divisió per zero no s'ha definit. Multipliqueu els dos costats de l'equació per 2x, el mínim comú múltiple de x,2,2x.
2+x^{2}=x+4
Multipliqueu x per x per obtenir x^{2}.
2+x^{2}-x=4
Resteu x en tots dos costats.
x^{2}-x=4-2
Resteu 2 en tots dos costats.
x^{2}-x=2
Resteu 4 de 2 per obtenir 2.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=2+\left(-\frac{1}{2}\right)^{2}
Dividiu -1, el coeficient del terme x, per 2 per obtenir -\frac{1}{2}. A continuació, sumeu el quadrat del nombre -\frac{1}{2} als dos costats de l'equació. Aquest pas fa que el costat esquerre de l'equació sigui un quadrat perfecte.
x^{2}-x+\frac{1}{4}=2+\frac{1}{4}
Per elevar -\frac{1}{2} al quadrat, eleveu al quadrat el numerador i el denominador de la fracció.
x^{2}-x+\frac{1}{4}=\frac{9}{4}
Sumeu 2 i \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{9}{4}
Factor x^{2}-x+\frac{1}{4}. En general, quan x^{2}+bx+c és un quadrat perfecte, sempre es pot tenir en compte com \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Calculeu l'arrel quadrada als dos costats de l'equació.
x-\frac{1}{2}=\frac{3}{2} x-\frac{1}{2}=-\frac{3}{2}
Simplifiqueu.
x=2 x=-1
Sumeu \frac{1}{2} als dos costats de l'equació.