Ves al contingut principal
Calcula
Tick mark Image
Diferencieu x
Tick mark Image
Gràfic

Problemes similars de la cerca web

Compartir

\frac{1}{\left(x-1\right)\left(x+1\right)}-\frac{2}{\left(x-1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
Aïlleu la x^{2}-1. Aïlleu la x^{2}+3x-4.
\frac{x+4}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}-\frac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
Per afegir o restar les expressions, amplieu-les perquè els denominadors coincideixin. El mínim comú múltiple de \left(x-1\right)\left(x+1\right) i \left(x-1\right)\left(x+4\right) és \left(x-1\right)\left(x+1\right)\left(x+4\right). Multipliqueu \frac{1}{\left(x-1\right)\left(x+1\right)} per \frac{x+4}{x+4}. Multipliqueu \frac{2}{\left(x-1\right)\left(x+4\right)} per \frac{x+1}{x+1}.
\frac{x+4-2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
Com que \frac{x+4}{\left(x-1\right)\left(x+1\right)\left(x+4\right)} i \frac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+4\right)} tenen el mateix denominador, resteu-los mitjançant la subtracció dels seus numeradors.
\frac{x+4-2x-2}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
Feu les multiplicacions a x+4-2\left(x+1\right).
\frac{-x+2}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
Combineu els termes similars de x+4-2x-2.
\frac{-x+2}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{\left(x-3\right)\left(x+1\right)}
Aïlleu la x^{2}-2x-3.
\frac{\left(-x+2\right)\left(x-3\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{\left(x-1\right)\left(x+4\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}
Per afegir o restar les expressions, amplieu-les perquè els denominadors coincideixin. El mínim comú múltiple de \left(x-1\right)\left(x+1\right)\left(x+4\right) i \left(x-3\right)\left(x+1\right) és \left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right). Multipliqueu \frac{-x+2}{\left(x-1\right)\left(x+1\right)\left(x+4\right)} per \frac{x-3}{x-3}. Multipliqueu \frac{1}{\left(x-3\right)\left(x+1\right)} per \frac{\left(x-1\right)\left(x+4\right)}{\left(x-1\right)\left(x+4\right)}.
\frac{\left(-x+2\right)\left(x-3\right)+\left(x-1\right)\left(x+4\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}
Com que \frac{\left(-x+2\right)\left(x-3\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)} i \frac{\left(x-1\right)\left(x+4\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)} tenen el mateix denominador, afegiu-los mitjançant l'addició dels seus numeradors.
\frac{-x^{2}+3x+2x-6+x^{2}+4x-x-4}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}
Feu les multiplicacions a \left(-x+2\right)\left(x-3\right)+\left(x-1\right)\left(x+4\right).
\frac{8x-10}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}
Combineu els termes similars de -x^{2}+3x+2x-6+x^{2}+4x-x-4.
\frac{8x-10}{x^{4}+x^{3}-13x^{2}-x+12}
Expandiu \left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right).