Ves al contingut principal
Calcula
Tick mark Image
Diferencieu k
Tick mark Image

Problemes similars de la cerca web

Compartir

\frac{-15k^{2}}{15\left(k+3\right)k^{2}}
Calculeu les expressions que encara no s'hagin calculat.
\frac{-1}{k+3}
Anul·leu 15k^{2} tant al numerador com al denominador.
\frac{\left(15k^{3}+45k^{2}\right)\frac{\mathrm{d}}{\mathrm{d}k}(-15k^{2})-\left(-15k^{2}\frac{\mathrm{d}}{\mathrm{d}k}(15k^{3}+45k^{2})\right)}{\left(15k^{3}+45k^{2}\right)^{2}}
Per a dues funcions diferenciables qualssevol, la derivada del quocient de dues funcions és el denominador multiplicat per la derivada del numerador menys el numerador multiplicat per la derivada del denominador, i tot dividit pel denominador al quadrat.
\frac{\left(15k^{3}+45k^{2}\right)\times 2\left(-15\right)k^{2-1}-\left(-15k^{2}\left(3\times 15k^{3-1}+2\times 45k^{2-1}\right)\right)}{\left(15k^{3}+45k^{2}\right)^{2}}
La derivada d'un polinomi és la suma de les derivades dels seus termes. La derivada d'un terme constant és 0. La derivada de ax^{n} és nax^{n-1}.
\frac{\left(15k^{3}+45k^{2}\right)\left(-30\right)k^{1}-\left(-15k^{2}\left(45k^{2}+90k^{1}\right)\right)}{\left(15k^{3}+45k^{2}\right)^{2}}
Simplifiqueu.
\frac{15k^{3}\left(-30\right)k^{1}+45k^{2}\left(-30\right)k^{1}-\left(-15k^{2}\left(45k^{2}+90k^{1}\right)\right)}{\left(15k^{3}+45k^{2}\right)^{2}}
Multipliqueu 15k^{3}+45k^{2} per -30k^{1}.
\frac{15k^{3}\left(-30\right)k^{1}+45k^{2}\left(-30\right)k^{1}-\left(-15k^{2}\times 45k^{2}-15k^{2}\times 90k^{1}\right)}{\left(15k^{3}+45k^{2}\right)^{2}}
Multipliqueu -15k^{2} per 45k^{2}+90k^{1}.
\frac{15\left(-30\right)k^{3+1}+45\left(-30\right)k^{2+1}-\left(-15\times 45k^{2+2}-15\times 90k^{2+1}\right)}{\left(15k^{3}+45k^{2}\right)^{2}}
Per multiplicar potències de la mateixa base, sumeu-ne els exponents.
\frac{-450k^{4}-1350k^{3}-\left(-675k^{4}-1350k^{3}\right)}{\left(15k^{3}+45k^{2}\right)^{2}}
Simplifiqueu.
\frac{225k^{4}-9k^{2}}{\left(15k^{3}+45k^{2}\right)^{2}}
Combineu els termes iguals.