Ves al contingut principal
Calcula
Tick mark Image
Expandiu
Tick mark Image
Gràfic

Problemes similars de la cerca web

Compartir

\frac{15-\left(\frac{x^{4}\left(x^{2}+1\right)}{x^{2}+1}-\frac{x^{4}+1}{x^{2}+1}\right)\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Per afegir o restar les expressions, amplieu-les perquè els denominadors coincideixin. Multipliqueu x^{4} per \frac{x^{2}+1}{x^{2}+1}.
\frac{15-\frac{x^{4}\left(x^{2}+1\right)-\left(x^{4}+1\right)}{x^{2}+1}\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Com que \frac{x^{4}\left(x^{2}+1\right)}{x^{2}+1} i \frac{x^{4}+1}{x^{2}+1} tenen el mateix denominador, resteu-los mitjançant la subtracció dels seus numeradors.
\frac{15-\frac{x^{6}+x^{4}-x^{4}-1}{x^{2}+1}\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Feu les multiplicacions a x^{4}\left(x^{2}+1\right)-\left(x^{4}+1\right).
\frac{15-\frac{x^{6}-1}{x^{2}+1}\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Combineu els termes similars de x^{6}+x^{4}-x^{4}-1.
\frac{15-\frac{\left(x^{6}-1\right)\left(x^{2}+1\right)\left(x-4\right)}{\left(x^{2}+1\right)\left(x^{7}+6x^{6}-x-6\right)}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Per multiplicar \frac{x^{6}-1}{x^{2}+1} per \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}, multipliqueu el numerador pel numerador i el denominador pel denominador.
\frac{15-\frac{\left(x-4\right)\left(x^{6}-1\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Anul·leu x^{2}+1 tant al numerador com al denominador.
\frac{15-\frac{\left(x-4\right)\left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+6\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Calculeu les expressions que encara no s'hagin calculat a \frac{\left(x-4\right)\left(x^{6}-1\right)}{x^{7}+6x^{6}-x-6}.
\frac{15-\frac{x-4}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Anul·leu \left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right) tant al numerador com al denominador.
\frac{\frac{15\left(x+6\right)}{x+6}-\frac{x-4}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Per afegir o restar les expressions, amplieu-les perquè els denominadors coincideixin. Multipliqueu 15 per \frac{x+6}{x+6}.
\frac{\frac{15\left(x+6\right)-\left(x-4\right)}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Com que \frac{15\left(x+6\right)}{x+6} i \frac{x-4}{x+6} tenen el mateix denominador, resteu-los mitjançant la subtracció dels seus numeradors.
\frac{\frac{15x+90-x+4}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Feu les multiplicacions a 15\left(x+6\right)-\left(x-4\right).
\frac{\frac{14x+94}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Combineu els termes similars de 15x+90-x+4.
\frac{\left(14x+94\right)\left(3x^{2}+12x-36\right)}{\left(x+6\right)\left(x^{2}+29x+78\right)}
Dividiu \frac{14x+94}{x+6} per \frac{x^{2}+29x+78}{3x^{2}+12x-36} multiplicant \frac{14x+94}{x+6} pel recíproc de \frac{x^{2}+29x+78}{3x^{2}+12x-36}.
\frac{2\times 3\left(x-2\right)\left(x+6\right)\left(7x+47\right)}{\left(x+3\right)\left(x+6\right)\left(x+26\right)}
Calculeu les expressions que encara no s'hagin calculat.
\frac{2\times 3\left(x-2\right)\left(7x+47\right)}{\left(x+3\right)\left(x+26\right)}
Anul·leu x+6 tant al numerador com al denominador.
\frac{42x^{2}+198x-564}{x^{2}+29x+78}
Expandiu l'expressió.
\frac{15-\left(\frac{x^{4}\left(x^{2}+1\right)}{x^{2}+1}-\frac{x^{4}+1}{x^{2}+1}\right)\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Per afegir o restar les expressions, amplieu-les perquè els denominadors coincideixin. Multipliqueu x^{4} per \frac{x^{2}+1}{x^{2}+1}.
\frac{15-\frac{x^{4}\left(x^{2}+1\right)-\left(x^{4}+1\right)}{x^{2}+1}\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Com que \frac{x^{4}\left(x^{2}+1\right)}{x^{2}+1} i \frac{x^{4}+1}{x^{2}+1} tenen el mateix denominador, resteu-los mitjançant la subtracció dels seus numeradors.
\frac{15-\frac{x^{6}+x^{4}-x^{4}-1}{x^{2}+1}\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Feu les multiplicacions a x^{4}\left(x^{2}+1\right)-\left(x^{4}+1\right).
\frac{15-\frac{x^{6}-1}{x^{2}+1}\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Combineu els termes similars de x^{6}+x^{4}-x^{4}-1.
\frac{15-\frac{\left(x^{6}-1\right)\left(x^{2}+1\right)\left(x-4\right)}{\left(x^{2}+1\right)\left(x^{7}+6x^{6}-x-6\right)}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Per multiplicar \frac{x^{6}-1}{x^{2}+1} per \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}, multipliqueu el numerador pel numerador i el denominador pel denominador.
\frac{15-\frac{\left(x-4\right)\left(x^{6}-1\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Anul·leu x^{2}+1 tant al numerador com al denominador.
\frac{15-\frac{\left(x-4\right)\left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+6\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Calculeu les expressions que encara no s'hagin calculat a \frac{\left(x-4\right)\left(x^{6}-1\right)}{x^{7}+6x^{6}-x-6}.
\frac{15-\frac{x-4}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Anul·leu \left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right) tant al numerador com al denominador.
\frac{\frac{15\left(x+6\right)}{x+6}-\frac{x-4}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Per afegir o restar les expressions, amplieu-les perquè els denominadors coincideixin. Multipliqueu 15 per \frac{x+6}{x+6}.
\frac{\frac{15\left(x+6\right)-\left(x-4\right)}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Com que \frac{15\left(x+6\right)}{x+6} i \frac{x-4}{x+6} tenen el mateix denominador, resteu-los mitjançant la subtracció dels seus numeradors.
\frac{\frac{15x+90-x+4}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Feu les multiplicacions a 15\left(x+6\right)-\left(x-4\right).
\frac{\frac{14x+94}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Combineu els termes similars de 15x+90-x+4.
\frac{\left(14x+94\right)\left(3x^{2}+12x-36\right)}{\left(x+6\right)\left(x^{2}+29x+78\right)}
Dividiu \frac{14x+94}{x+6} per \frac{x^{2}+29x+78}{3x^{2}+12x-36} multiplicant \frac{14x+94}{x+6} pel recíproc de \frac{x^{2}+29x+78}{3x^{2}+12x-36}.
\frac{2\times 3\left(x-2\right)\left(x+6\right)\left(7x+47\right)}{\left(x+3\right)\left(x+6\right)\left(x+26\right)}
Calculeu les expressions que encara no s'hagin calculat.
\frac{2\times 3\left(x-2\right)\left(7x+47\right)}{\left(x+3\right)\left(x+26\right)}
Anul·leu x+6 tant al numerador com al denominador.
\frac{42x^{2}+198x-564}{x^{2}+29x+78}
Expandiu l'expressió.