Ves al contingut principal
Calcula
Tick mark Image
Expandiu
Tick mark Image

Problemes similars de la cerca web

Compartir

\frac{\left(\frac{\left(\frac{3}{5}\right)^{2}x^{2}y^{2}}{\frac{3}{5}x}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Expandiu \left(\frac{3}{5}xy\right)^{2}.
\frac{\left(\frac{\frac{9}{25}x^{2}y^{2}}{\frac{3}{5}x}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Calculeu \frac{3}{5} elevat a 2 per obtenir \frac{9}{25}.
\frac{\left(\frac{\frac{9}{25}xy^{2}}{\frac{3}{5}}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Anul·leu x tant al numerador com al denominador.
\frac{\left(\frac{\frac{9}{25}xy^{2}\times 5}{3}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Dividiu \frac{9}{25}xy^{2} per \frac{3}{5} multiplicant \frac{9}{25}xy^{2} pel recíproc de \frac{3}{5}.
\frac{\left(\frac{\frac{9}{5}xy^{2}}{3}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Multipliqueu \frac{9}{25} per 5 per obtenir \frac{9}{5}.
\frac{\left(\frac{3}{5}xy^{2}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Dividiu \frac{9}{5}xy^{2} entre 3 per obtenir \frac{3}{5}xy^{2}.
\frac{\left(\frac{3}{5}\right)^{3}x^{3}\left(y^{2}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Expandiu \left(\frac{3}{5}xy^{2}\right)^{3}.
\frac{\left(\frac{3}{5}\right)^{3}x^{3}y^{6}}{\left(\frac{3}{5}x\right)^{2}}
Per elevar una potència a una altra potència, multipliqueu-ne els exponents. Multipliqueu 2 i 3 per obtenir 6.
\frac{\frac{27}{125}x^{3}y^{6}}{\left(\frac{3}{5}x\right)^{2}}
Calculeu \frac{3}{5} elevat a 3 per obtenir \frac{27}{125}.
\frac{\frac{27}{125}x^{3}y^{6}}{\left(\frac{3}{5}\right)^{2}x^{2}}
Expandiu \left(\frac{3}{5}x\right)^{2}.
\frac{\frac{27}{125}x^{3}y^{6}}{\frac{9}{25}x^{2}}
Calculeu \frac{3}{5} elevat a 2 per obtenir \frac{9}{25}.
\frac{\frac{27}{125}xy^{6}}{\frac{9}{25}}
Anul·leu x^{2} tant al numerador com al denominador.
\frac{\frac{27}{125}xy^{6}\times 25}{9}
Dividiu \frac{27}{125}xy^{6} per \frac{9}{25} multiplicant \frac{27}{125}xy^{6} pel recíproc de \frac{9}{25}.
\frac{\frac{27}{5}xy^{6}}{9}
Multipliqueu \frac{27}{125} per 25 per obtenir \frac{27}{5}.
\frac{3}{5}xy^{6}
Dividiu \frac{27}{5}xy^{6} entre 9 per obtenir \frac{3}{5}xy^{6}.
\frac{\left(\frac{\left(\frac{3}{5}\right)^{2}x^{2}y^{2}}{\frac{3}{5}x}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Expandiu \left(\frac{3}{5}xy\right)^{2}.
\frac{\left(\frac{\frac{9}{25}x^{2}y^{2}}{\frac{3}{5}x}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Calculeu \frac{3}{5} elevat a 2 per obtenir \frac{9}{25}.
\frac{\left(\frac{\frac{9}{25}xy^{2}}{\frac{3}{5}}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Anul·leu x tant al numerador com al denominador.
\frac{\left(\frac{\frac{9}{25}xy^{2}\times 5}{3}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Dividiu \frac{9}{25}xy^{2} per \frac{3}{5} multiplicant \frac{9}{25}xy^{2} pel recíproc de \frac{3}{5}.
\frac{\left(\frac{\frac{9}{5}xy^{2}}{3}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Multipliqueu \frac{9}{25} per 5 per obtenir \frac{9}{5}.
\frac{\left(\frac{3}{5}xy^{2}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Dividiu \frac{9}{5}xy^{2} entre 3 per obtenir \frac{3}{5}xy^{2}.
\frac{\left(\frac{3}{5}\right)^{3}x^{3}\left(y^{2}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Expandiu \left(\frac{3}{5}xy^{2}\right)^{3}.
\frac{\left(\frac{3}{5}\right)^{3}x^{3}y^{6}}{\left(\frac{3}{5}x\right)^{2}}
Per elevar una potència a una altra potència, multipliqueu-ne els exponents. Multipliqueu 2 i 3 per obtenir 6.
\frac{\frac{27}{125}x^{3}y^{6}}{\left(\frac{3}{5}x\right)^{2}}
Calculeu \frac{3}{5} elevat a 3 per obtenir \frac{27}{125}.
\frac{\frac{27}{125}x^{3}y^{6}}{\left(\frac{3}{5}\right)^{2}x^{2}}
Expandiu \left(\frac{3}{5}x\right)^{2}.
\frac{\frac{27}{125}x^{3}y^{6}}{\frac{9}{25}x^{2}}
Calculeu \frac{3}{5} elevat a 2 per obtenir \frac{9}{25}.
\frac{\frac{27}{125}xy^{6}}{\frac{9}{25}}
Anul·leu x^{2} tant al numerador com al denominador.
\frac{\frac{27}{125}xy^{6}\times 25}{9}
Dividiu \frac{27}{125}xy^{6} per \frac{9}{25} multiplicant \frac{27}{125}xy^{6} pel recíproc de \frac{9}{25}.
\frac{\frac{27}{5}xy^{6}}{9}
Multipliqueu \frac{27}{125} per 25 per obtenir \frac{27}{5}.
\frac{3}{5}xy^{6}
Dividiu \frac{27}{5}xy^{6} entre 9 per obtenir \frac{3}{5}xy^{6}.