Riješite za x
x=\frac{3y+10}{y+4}
y\neq -4
Riješite za y
y=-\frac{2\left(2x-5\right)}{x-3}
x\neq 3
Graf
Dijeliti
Kopirano u clipboard
y\left(x-3\right)=-2+\left(x-3\right)\left(-4\right)
Promjenjiva x ne može biti jednaka vrijednosti 3 zato što dijeljenje nulom nije definirano. Pomnožite obje strane jednačine sa x-3.
yx-3y=-2+\left(x-3\right)\left(-4\right)
Koristite distributivno svojstvo da biste pomnožili y sa x-3.
yx-3y=-2-4x+12
Koristite distributivno svojstvo da biste pomnožili x-3 sa -4.
yx-3y=10-4x
Saberite -2 i 12 da biste dobili 10.
yx-3y+4x=10
Dodajte 4x na obje strane.
yx+4x=10+3y
Dodajte 3y na obje strane.
\left(y+4\right)x=10+3y
Kombinirajte sve termine koji sadrže x.
\left(y+4\right)x=3y+10
Jednačina je u standardnom obliku.
\frac{\left(y+4\right)x}{y+4}=\frac{3y+10}{y+4}
Podijelite obje strane s y+4.
x=\frac{3y+10}{y+4}
Dijelјenje sa y+4 poništava množenje sa y+4.
x=\frac{3y+10}{y+4}\text{, }x\neq 3
Promjenjiva x ne može biti jednaka vrijednosti 3.
Primjeri
kvadratna jednacina
{ x } ^ { 2 } - 4 x - 5 = 0
trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednačina
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultana jednačina
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}