Preskoči na glavni sadržaj
Riješite za x
Tick mark Image
Graf

Dijeliti

x\left(2+\frac{16+24m^{2}-9m^{4}}{2\left(3m^{2}+4\right)}\right)\left(6m^{2}+8\right)\times 2=2m\left(3m^{2}+4\right)\sqrt{6}
Pomnožite obje strane jednačine sa 2m\left(3m^{2}+4\right), najmanjim zajedničkim sadržaocem broja 2\left(3m^{2}+4\right),m,2.
x\left(\frac{2\times 2\left(3m^{2}+4\right)}{2\left(3m^{2}+4\right)}+\frac{16+24m^{2}-9m^{4}}{2\left(3m^{2}+4\right)}\right)\left(6m^{2}+8\right)\times 2=2m\left(3m^{2}+4\right)\sqrt{6}
Da biste izvršili zbrajanje ili oduzimanje izraza, rastavite ih kako bi im nazivnici bili isti. Pomnožite 2 i \frac{2\left(3m^{2}+4\right)}{2\left(3m^{2}+4\right)}.
x\times \frac{2\times 2\left(3m^{2}+4\right)+16+24m^{2}-9m^{4}}{2\left(3m^{2}+4\right)}\left(6m^{2}+8\right)\times 2=2m\left(3m^{2}+4\right)\sqrt{6}
Pošto \frac{2\times 2\left(3m^{2}+4\right)}{2\left(3m^{2}+4\right)} i \frac{16+24m^{2}-9m^{4}}{2\left(3m^{2}+4\right)} imaju isti imenilac, saberite ih tako što ćete sabrati njihove brojioce.
x\times \frac{12m^{2}+16+16+24m^{2}-9m^{4}}{2\left(3m^{2}+4\right)}\left(6m^{2}+8\right)\times 2=2m\left(3m^{2}+4\right)\sqrt{6}
Izvršite množenja u 2\times 2\left(3m^{2}+4\right)+16+24m^{2}-9m^{4}.
x\times \frac{36m^{2}+32-9m^{4}}{2\left(3m^{2}+4\right)}\left(6m^{2}+8\right)\times 2=2m\left(3m^{2}+4\right)\sqrt{6}
Kombinirajte slične izraze u 12m^{2}+16+16+24m^{2}-9m^{4}.
\frac{x\left(36m^{2}+32-9m^{4}\right)}{2\left(3m^{2}+4\right)}\left(6m^{2}+8\right)\times 2=2m\left(3m^{2}+4\right)\sqrt{6}
Izrazite x\times \frac{36m^{2}+32-9m^{4}}{2\left(3m^{2}+4\right)} kao jedan razlomak.
\frac{x\left(36m^{2}+32-9m^{4}\right)\left(6m^{2}+8\right)}{2\left(3m^{2}+4\right)}\times 2=2m\left(3m^{2}+4\right)\sqrt{6}
Izrazite \frac{x\left(36m^{2}+32-9m^{4}\right)}{2\left(3m^{2}+4\right)}\left(6m^{2}+8\right) kao jedan razlomak.
\frac{x\left(36m^{2}+32-9m^{4}\right)\left(6m^{2}+8\right)\times 2}{2\left(3m^{2}+4\right)}=2m\left(3m^{2}+4\right)\sqrt{6}
Izrazite \frac{x\left(36m^{2}+32-9m^{4}\right)\left(6m^{2}+8\right)}{2\left(3m^{2}+4\right)}\times 2 kao jedan razlomak.
\frac{x\left(6m^{2}+8\right)\left(-9m^{4}+36m^{2}+32\right)}{3m^{2}+4}=2m\left(3m^{2}+4\right)\sqrt{6}
Otkaži 2 u brojiocu i imeniocu.
\frac{x\left(6m^{2}+8\right)\left(-9m^{4}+36m^{2}+32\right)}{3m^{2}+4}=\left(6m^{3}+8m\right)\sqrt{6}
Koristite distributivno svojstvo da biste pomnožili 2m sa 3m^{2}+4.
\frac{x\left(6m^{2}+8\right)\left(-9m^{4}+36m^{2}+32\right)}{3m^{2}+4}=6m^{3}\sqrt{6}+8m\sqrt{6}
Koristite distributivno svojstvo da biste pomnožili 6m^{3}+8m sa \sqrt{6}.
\frac{-2\times 9x\left(3m^{2}+4\right)\left(m^{2}-\left(-\frac{2}{3}\sqrt{17}+2\right)\right)\left(m^{2}-\left(\frac{2}{3}\sqrt{17}+2\right)\right)}{3m^{2}+4}=6m^{3}\sqrt{6}+8m\sqrt{6}
Faktorirajte izraze koji nisu već faktorirani u \frac{x\left(6m^{2}+8\right)\left(-9m^{4}+36m^{2}+32\right)}{3m^{2}+4}.
-2\times 9x\left(m^{2}-\left(-\frac{2}{3}\sqrt{17}+2\right)\right)\left(m^{2}-\left(\frac{2}{3}\sqrt{17}+2\right)\right)=6m^{3}\sqrt{6}+8m\sqrt{6}
Otkaži 3m^{2}+4 u brojiocu i imeniocu.
-18xm^{4}+72xm^{2}+64x=6m^{3}\sqrt{6}+8m\sqrt{6}
Razvijte izraz.
\left(-18m^{4}+72m^{2}+64\right)x=6m^{3}\sqrt{6}+8m\sqrt{6}
Kombinirajte sve termine koji sadrže x.
\left(64+72m^{2}-18m^{4}\right)x=6\sqrt{6}m^{3}+8\sqrt{6}m
Jednačina je u standardnom obliku.
\frac{\left(64+72m^{2}-18m^{4}\right)x}{64+72m^{2}-18m^{4}}=\frac{2\sqrt{6}m\left(3m^{2}+4\right)}{64+72m^{2}-18m^{4}}
Podijelite obje strane s -18m^{4}+72m^{2}+64.
x=\frac{2\sqrt{6}m\left(3m^{2}+4\right)}{64+72m^{2}-18m^{4}}
Dijelјenje sa -18m^{4}+72m^{2}+64 poništava množenje sa -18m^{4}+72m^{2}+64.
x=\frac{\sqrt{6}m\left(3m^{2}+4\right)}{32+36m^{2}-9m^{4}}
Podijelite 2m\left(3m^{2}+4\right)\sqrt{6} sa -18m^{4}+72m^{2}+64.