Preskoči na glavni sadržaj
Riješite za x
Tick mark Image
Graf

Slični problemi iz web pretrage

Dijeliti

x^{2}-9x+12=0
Sve jednačine u obrascu ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna formula daje dva rješenja, jedno kada je ± sabiranje, a drugo kada je oduzimanje.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 12}}{2}
Ova jednačina je u standardnom obliku: ax^{2}+bx+c=0. Zamijenite 1 i a, -9 i b, kao i 12 i c u kvadratnoj formuli, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 12}}{2}
Izračunajte kvadrat od -9.
x=\frac{-\left(-9\right)±\sqrt{81-48}}{2}
Pomnožite -4 i 12.
x=\frac{-\left(-9\right)±\sqrt{33}}{2}
Saberite 81 i -48.
x=\frac{9±\sqrt{33}}{2}
Opozit broja -9 je 9.
x=\frac{\sqrt{33}+9}{2}
Sada riješite jednačinu x=\frac{9±\sqrt{33}}{2} kada je ± plus. Saberite 9 i \sqrt{33}.
x=\frac{9-\sqrt{33}}{2}
Sada riješite jednačinu x=\frac{9±\sqrt{33}}{2} kada je ± minus. Oduzmite \sqrt{33} od 9.
x=\frac{\sqrt{33}+9}{2} x=\frac{9-\sqrt{33}}{2}
Jednačina je riješena.
x^{2}-9x+12=0
Kvadratne jednačine kao što je ova mogu se riješiti dovršavanjem kvadrata. Da bi se dovršio kvadrat, jednačina mora biti u obliku x^{2}+bx=c.
x^{2}-9x+12-12=-12
Oduzmite 12 s obje strane jednačine.
x^{2}-9x=-12
Oduzimanjem 12 od samog sebe ostaje 0.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=-12+\left(-\frac{9}{2}\right)^{2}
Podijelite -9, koeficijent izraza x, sa 2 da biste dobili -\frac{9}{2}. Zatim dodajte kvadrat od -\frac{9}{2} na obje strane jednačine. Ovaj korak čini lijevu stranu jednačine savršenim kvadratom.
x^{2}-9x+\frac{81}{4}=-12+\frac{81}{4}
Izračunajte kvadrat od -\frac{9}{2} tako što ćete izračunati kvadrat od brojioca i imenioca razlomka.
x^{2}-9x+\frac{81}{4}=\frac{33}{4}
Saberite -12 i \frac{81}{4}.
\left(x-\frac{9}{2}\right)^{2}=\frac{33}{4}
Faktor x^{2}-9x+\frac{81}{4}. Generalno, kada je x^{2}+bx+c savršen kvadrat, uvijek se može uračunati kao \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{33}{4}}
Izračunajte kvadratni korijen od obje strane jednačine.
x-\frac{9}{2}=\frac{\sqrt{33}}{2} x-\frac{9}{2}=-\frac{\sqrt{33}}{2}
Pojednostavite.
x=\frac{\sqrt{33}+9}{2} x=\frac{9-\sqrt{33}}{2}
Dodajte \frac{9}{2} na obje strane jednačine.