Preskoči na glavni sadržaj
Riješite za x
Tick mark Image
Graf

Slični problemi iz web pretrage

Dijeliti

x^{2}-5x=-2
Sve jednačine u obrascu ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna formula daje dva rješenja, jedno kada je ± sabiranje, a drugo kada je oduzimanje.
x^{2}-5x-\left(-2\right)=-2-\left(-2\right)
Dodajte 2 na obje strane jednačine.
x^{2}-5x-\left(-2\right)=0
Oduzimanjem -2 od samog sebe ostaje 0.
x^{2}-5x+2=0
Oduzmite -2 od 0.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2}}{2}
Ova jednačina je u standardnom obliku: ax^{2}+bx+c=0. Zamijenite 1 i a, -5 i b, kao i 2 i c u kvadratnoj formuli, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 2}}{2}
Izračunajte kvadrat od -5.
x=\frac{-\left(-5\right)±\sqrt{25-8}}{2}
Pomnožite -4 i 2.
x=\frac{-\left(-5\right)±\sqrt{17}}{2}
Saberite 25 i -8.
x=\frac{5±\sqrt{17}}{2}
Opozit broja -5 je 5.
x=\frac{\sqrt{17}+5}{2}
Sada riješite jednačinu x=\frac{5±\sqrt{17}}{2} kada je ± plus. Saberite 5 i \sqrt{17}.
x=\frac{5-\sqrt{17}}{2}
Sada riješite jednačinu x=\frac{5±\sqrt{17}}{2} kada je ± minus. Oduzmite \sqrt{17} od 5.
x=\frac{\sqrt{17}+5}{2} x=\frac{5-\sqrt{17}}{2}
Jednačina je riješena.
x^{2}-5x=-2
Kvadratne jednačine kao što je ova mogu se riješiti dovršavanjem kvadrata. Da bi se dovršio kvadrat, jednačina mora biti u obliku x^{2}+bx=c.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-2+\left(-\frac{5}{2}\right)^{2}
Podijelite -5, koeficijent izraza x, sa 2 da biste dobili -\frac{5}{2}. Zatim dodajte kvadrat od -\frac{5}{2} na obje strane jednačine. Ovaj korak čini lijevu stranu jednačine savršenim kvadratom.
x^{2}-5x+\frac{25}{4}=-2+\frac{25}{4}
Izračunajte kvadrat od -\frac{5}{2} tako što ćete izračunati kvadrat od brojioca i imenioca razlomka.
x^{2}-5x+\frac{25}{4}=\frac{17}{4}
Saberite -2 i \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{17}{4}
Faktor x^{2}-5x+\frac{25}{4}. Generalno, kada je x^{2}+bx+c savršen kvadrat, uvijek se može uračunati kao \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{17}{4}}
Izračunajte kvadratni korijen od obje strane jednačine.
x-\frac{5}{2}=\frac{\sqrt{17}}{2} x-\frac{5}{2}=-\frac{\sqrt{17}}{2}
Pojednostavite.
x=\frac{\sqrt{17}+5}{2} x=\frac{5-\sqrt{17}}{2}
Dodajte \frac{5}{2} na obje strane jednačine.