Preskoči na glavni sadržaj
Riješite za x (complex solution)
Tick mark Image
Graf

Slični problemi iz web pretrage

Dijeliti

x^{2}-3x+10=0
Sve jednačine u obrascu ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna formula daje dva rješenja, jedno kada je ± sabiranje, a drugo kada je oduzimanje.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 10}}{2}
Ova jednačina je u standardnom obliku: ax^{2}+bx+c=0. Zamijenite 1 i a, -3 i b, kao i 10 i c u kvadratnoj formuli, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 10}}{2}
Izračunajte kvadrat od -3.
x=\frac{-\left(-3\right)±\sqrt{9-40}}{2}
Pomnožite -4 i 10.
x=\frac{-\left(-3\right)±\sqrt{-31}}{2}
Saberite 9 i -40.
x=\frac{-\left(-3\right)±\sqrt{31}i}{2}
Izračunajte kvadratni korijen od -31.
x=\frac{3±\sqrt{31}i}{2}
Opozit broja -3 je 3.
x=\frac{3+\sqrt{31}i}{2}
Sada riješite jednačinu x=\frac{3±\sqrt{31}i}{2} kada je ± plus. Saberite 3 i i\sqrt{31}.
x=\frac{-\sqrt{31}i+3}{2}
Sada riješite jednačinu x=\frac{3±\sqrt{31}i}{2} kada je ± minus. Oduzmite i\sqrt{31} od 3.
x=\frac{3+\sqrt{31}i}{2} x=\frac{-\sqrt{31}i+3}{2}
Jednačina je riješena.
x^{2}-3x+10=0
Kvadratne jednačine kao što je ova mogu se riješiti dovršavanjem kvadrata. Da bi se dovršio kvadrat, jednačina mora biti u obliku x^{2}+bx=c.
x^{2}-3x+10-10=-10
Oduzmite 10 s obje strane jednačine.
x^{2}-3x=-10
Oduzimanjem 10 od samog sebe ostaje 0.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-10+\left(-\frac{3}{2}\right)^{2}
Podijelite -3, koeficijent izraza x, sa 2 da biste dobili -\frac{3}{2}. Zatim dodajte kvadrat od -\frac{3}{2} na obje strane jednačine. Ovaj korak čini lijevu stranu jednačine savršenim kvadratom.
x^{2}-3x+\frac{9}{4}=-10+\frac{9}{4}
Izračunajte kvadrat od -\frac{3}{2} tako što ćete izračunati kvadrat od brojioca i imenioca razlomka.
x^{2}-3x+\frac{9}{4}=-\frac{31}{4}
Saberite -10 i \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=-\frac{31}{4}
Faktor x^{2}-3x+\frac{9}{4}. Generalno, kada je x^{2}+bx+c savršen kvadrat, uvijek se može uračunati kao \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{-\frac{31}{4}}
Izračunajte kvadratni korijen od obje strane jednačine.
x-\frac{3}{2}=\frac{\sqrt{31}i}{2} x-\frac{3}{2}=-\frac{\sqrt{31}i}{2}
Pojednostavite.
x=\frac{3+\sqrt{31}i}{2} x=\frac{-\sqrt{31}i+3}{2}
Dodajte \frac{3}{2} na obje strane jednačine.