Riješite za m
m=-\frac{x^{2}-2x+21}{2\left(7-3x\right)}
x\neq \frac{7}{3}
Riješite za x (complex solution)
x=\sqrt{\left(m-2\right)\left(9m+10\right)}+3m+1
x=-\sqrt{\left(m-2\right)\left(9m+10\right)}+3m+1
Riješite za x
x=\sqrt{\left(m-2\right)\left(9m+10\right)}+3m+1
x=-\sqrt{\left(m-2\right)\left(9m+10\right)}+3m+1\text{, }m\leq -\frac{10}{9}\text{ or }m\geq 2
Graf
Dijeliti
Kopirano u clipboard
x^{2}-2\left(1+3m\right)x+21+14m=0
Koristite distributivno svojstvo da biste pomnožili 7 sa 3+2m.
x^{2}-2\left(1+3m\right)x+14m=-21
Oduzmite 21 s obje strane. Bilo šta oduzeto od nule daje svoju negaciju.
x^{2}+\left(-2-6m\right)x+14m=-21
Koristite distributivno svojstvo da biste pomnožili -2 sa 1+3m.
x^{2}-2x-6mx+14m=-21
Koristite distributivno svojstvo da biste pomnožili -2-6m sa x.
-2x-6mx+14m=-21-x^{2}
Oduzmite x^{2} s obje strane.
-6mx+14m=-21-x^{2}+2x
Dodajte 2x na obje strane.
\left(-6x+14\right)m=-21-x^{2}+2x
Kombinirajte sve termine koji sadrže m.
\left(14-6x\right)m=-x^{2}+2x-21
Jednačina je u standardnom obliku.
\frac{\left(14-6x\right)m}{14-6x}=\frac{-x^{2}+2x-21}{14-6x}
Podijelite obje strane s -6x+14.
m=\frac{-x^{2}+2x-21}{14-6x}
Dijelјenje sa -6x+14 poništava množenje sa -6x+14.
m=\frac{-x^{2}+2x-21}{2\left(7-3x\right)}
Podijelite -21-x^{2}+2x sa -6x+14.
Primjeri
kvadratna jednacina
{ x } ^ { 2 } - 4 x - 5 = 0
trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednačina
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultana jednačina
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}