Preskoči na glavni sadržaj
Riješite za x
Tick mark Image
Graf

Slični problemi iz web pretrage

Dijeliti

a+b=1 ab=-342
Da biste riješili jednadžbu, faktorišite x^{2}+x-342 koristeći formulu x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Da biste pronašli a i b, uspostavite sistem koji treba riješiti.
-1,342 -2,171 -3,114 -6,57 -9,38 -18,19
Pošto je ab negativno, a a b ima suprotan znak. Pošto je a+b pozitivno, pozitivan broj ima veću apsolutnu vrijednost od negativnog. Navedite sve parove cijelih brojeva koji daju proizvod -342.
-1+342=341 -2+171=169 -3+114=111 -6+57=51 -9+38=29 -18+19=1
Izračunajte sumu za svaki par.
a=-18 b=19
Rješenje je njihov par koji daje sumu 1.
\left(x-18\right)\left(x+19\right)
Ponovo napišite faktorisani izraz \left(x+a\right)\left(x+b\right) pomoću dobijenih korena.
x=18 x=-19
Da biste došli do rješenja jednadžbe, riješite x-18=0 i x+19=0.
a+b=1 ab=1\left(-342\right)=-342
Da biste riješili jednadžbu, faktorišite lijevu stranu grupisanjem. Prvo, lijevu stranu treba prepisati kao x^{2}+ax+bx-342. Da biste pronašli a i b, uspostavite sistem koji treba riješiti.
-1,342 -2,171 -3,114 -6,57 -9,38 -18,19
Pošto je ab negativno, a a b ima suprotan znak. Pošto je a+b pozitivno, pozitivan broj ima veću apsolutnu vrijednost od negativnog. Navedite sve parove cijelih brojeva koji daju proizvod -342.
-1+342=341 -2+171=169 -3+114=111 -6+57=51 -9+38=29 -18+19=1
Izračunajte sumu za svaki par.
a=-18 b=19
Rješenje je njihov par koji daje sumu 1.
\left(x^{2}-18x\right)+\left(19x-342\right)
Ponovo napišite x^{2}+x-342 kao \left(x^{2}-18x\right)+\left(19x-342\right).
x\left(x-18\right)+19\left(x-18\right)
Isključite x u prvoj i 19 drugoj grupi.
\left(x-18\right)\left(x+19\right)
Izdvojite obični izraz x-18 koristeći svojstvo distribucije.
x=18 x=-19
Da biste došli do rješenja jednadžbe, riješite x-18=0 i x+19=0.
x^{2}+x-342=0
Sve jednačine u obrascu ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna formula daje dva rješenja, jedno kada je ± sabiranje, a drugo kada je oduzimanje.
x=\frac{-1±\sqrt{1^{2}-4\left(-342\right)}}{2}
Ova jednačina je u standardnom obliku: ax^{2}+bx+c=0. Zamijenite 1 i a, 1 i b, kao i -342 i c u kvadratnoj formuli, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-342\right)}}{2}
Izračunajte kvadrat od 1.
x=\frac{-1±\sqrt{1+1368}}{2}
Pomnožite -4 i -342.
x=\frac{-1±\sqrt{1369}}{2}
Saberite 1 i 1368.
x=\frac{-1±37}{2}
Izračunajte kvadratni korijen od 1369.
x=\frac{36}{2}
Sada riješite jednačinu x=\frac{-1±37}{2} kada je ± plus. Saberite -1 i 37.
x=18
Podijelite 36 sa 2.
x=-\frac{38}{2}
Sada riješite jednačinu x=\frac{-1±37}{2} kada je ± minus. Oduzmite 37 od -1.
x=-19
Podijelite -38 sa 2.
x=18 x=-19
Jednačina je riješena.
x^{2}+x-342=0
Kvadratne jednačine kao što je ova mogu se riješiti dovršavanjem kvadrata. Da bi se dovršio kvadrat, jednačina mora biti u obliku x^{2}+bx=c.
x^{2}+x-342-\left(-342\right)=-\left(-342\right)
Dodajte 342 na obje strane jednačine.
x^{2}+x=-\left(-342\right)
Oduzimanjem -342 od samog sebe ostaje 0.
x^{2}+x=342
Oduzmite -342 od 0.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=342+\left(\frac{1}{2}\right)^{2}
Podijelite 1, koeficijent izraza x, sa 2 da biste dobili \frac{1}{2}. Zatim dodajte kvadrat od \frac{1}{2} na obje strane jednačine. Ovaj korak čini lijevu stranu jednačine savršenim kvadratom.
x^{2}+x+\frac{1}{4}=342+\frac{1}{4}
Izračunajte kvadrat od \frac{1}{2} tako što ćete izračunati kvadrat od brojioca i imenioca razlomka.
x^{2}+x+\frac{1}{4}=\frac{1369}{4}
Saberite 342 i \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{1369}{4}
Faktor x^{2}+x+\frac{1}{4}. Generalno, kada je x^{2}+bx+c savršen kvadrat, uvijek se može uračunati kao \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{1369}{4}}
Izračunajte kvadratni korijen od obje strane jednačine.
x+\frac{1}{2}=\frac{37}{2} x+\frac{1}{2}=-\frac{37}{2}
Pojednostavite.
x=18 x=-19
Oduzmite \frac{1}{2} s obje strane jednačine.