Riješite za x
x = -\frac{5}{2} = -2\frac{1}{2} = -2,5
x=-\frac{1}{2}=-0,5
Graf
Dijeliti
Kopirano u clipboard
x^{2}+3x+\frac{5}{4}=0
Sve jednačine u obrascu ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna formula daje dva rješenja, jedno kada je ± sabiranje, a drugo kada je oduzimanje.
x=\frac{-3±\sqrt{3^{2}-4\times \frac{5}{4}}}{2}
Ova jednačina je u standardnom obliku: ax^{2}+bx+c=0. Zamijenite 1 i a, 3 i b, kao i \frac{5}{4} i c u kvadratnoj formuli, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times \frac{5}{4}}}{2}
Izračunajte kvadrat od 3.
x=\frac{-3±\sqrt{9-5}}{2}
Pomnožite -4 i \frac{5}{4}.
x=\frac{-3±\sqrt{4}}{2}
Saberite 9 i -5.
x=\frac{-3±2}{2}
Izračunajte kvadratni korijen od 4.
x=-\frac{1}{2}
Sada riješite jednačinu x=\frac{-3±2}{2} kada je ± plus. Saberite -3 i 2.
x=-\frac{5}{2}
Sada riješite jednačinu x=\frac{-3±2}{2} kada je ± minus. Oduzmite 2 od -3.
x=-\frac{1}{2} x=-\frac{5}{2}
Jednačina je riješena.
x^{2}+3x+\frac{5}{4}=0
Kvadratne jednačine kao što je ova mogu se riješiti dovršavanjem kvadrata. Da bi se dovršio kvadrat, jednačina mora biti u obliku x^{2}+bx=c.
x^{2}+3x+\frac{5}{4}-\frac{5}{4}=-\frac{5}{4}
Oduzmite \frac{5}{4} s obje strane jednačine.
x^{2}+3x=-\frac{5}{4}
Oduzimanjem \frac{5}{4} od samog sebe ostaje 0.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-\frac{5}{4}+\left(\frac{3}{2}\right)^{2}
Podijelite 3, koeficijent izraza x, sa 2 da biste dobili \frac{3}{2}. Zatim dodajte kvadrat od \frac{3}{2} na obje strane jednačine. Ovaj korak čini lijevu stranu jednačine savršenim kvadratom.
x^{2}+3x+\frac{9}{4}=\frac{-5+9}{4}
Izračunajte kvadrat od \frac{3}{2} tako što ćete izračunati kvadrat od brojioca i imenioca razlomka.
x^{2}+3x+\frac{9}{4}=1
Saberite -\frac{5}{4} i \frac{9}{4} tako što ćete pronaći zajednički imenilac i sabrati brojioce. Zatim svedite razlomak na najniže termine ukoliko je moguće.
\left(x+\frac{3}{2}\right)^{2}=1
Faktorirajte x^{2}+3x+\frac{9}{4}. Uopćeno govoreći, kada je x^{2}+bx+c savršeni kvadrat, on se uvijek može faktorirati kao \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{1}
Izračunajte kvadratni korijen od obje strane jednačine.
x+\frac{3}{2}=1 x+\frac{3}{2}=-1
Pojednostavite.
x=-\frac{1}{2} x=-\frac{5}{2}
Oduzmite \frac{3}{2} s obje strane jednačine.
Primjeri
kvadratna jednacina
{ x } ^ { 2 } - 4 x - 5 = 0
trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednačina
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultana jednačina
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}