Preskoči na glavni sadržaj
Riješite za x
Tick mark Image
Graf

Slični problemi iz web pretrage

Dijeliti

x^{2}+3-4x=0
Oduzmite 4x s obje strane.
x^{2}-4x+3=0
Prerasporedite jednačinu da biste je stavili u standardni oblik. Postavite termine redoslijedom od najvišeg do najnižeg stepena.
a+b=-4 ab=3
Da biste riješili jednadžbu, faktorišite x^{2}-4x+3 koristeći formulu x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Da biste pronašli a i b, uspostavite sistem koji treba riješiti.
a=-3 b=-1
Pošto je ab pozitivno, a a b ima isti znak. Pošto je a+b negativno, a a b su oba negativna. Jedini takav par je rješenje sistema.
\left(x-3\right)\left(x-1\right)
Ponovo napišite faktorisani izraz \left(x+a\right)\left(x+b\right) pomoću dobijenih korena.
x=3 x=1
Da biste došli do rješenja jednadžbe, riješite x-3=0 i x-1=0.
x^{2}+3-4x=0
Oduzmite 4x s obje strane.
x^{2}-4x+3=0
Prerasporedite jednačinu da biste je stavili u standardni oblik. Postavite termine redoslijedom od najvišeg do najnižeg stepena.
a+b=-4 ab=1\times 3=3
Da biste riješili jednadžbu, faktorišite lijevu stranu grupisanjem. Prvo, lijevu stranu treba prepisati kao x^{2}+ax+bx+3. Da biste pronašli a i b, uspostavite sistem koji treba riješiti.
a=-3 b=-1
Pošto je ab pozitivno, a a b ima isti znak. Pošto je a+b negativno, a a b su oba negativna. Jedini takav par je rješenje sistema.
\left(x^{2}-3x\right)+\left(-x+3\right)
Ponovo napišite x^{2}-4x+3 kao \left(x^{2}-3x\right)+\left(-x+3\right).
x\left(x-3\right)-\left(x-3\right)
Isključite x u prvoj i -1 drugoj grupi.
\left(x-3\right)\left(x-1\right)
Izdvojite obični izraz x-3 koristeći svojstvo distribucije.
x=3 x=1
Da biste došli do rješenja jednadžbe, riješite x-3=0 i x-1=0.
x^{2}+3-4x=0
Oduzmite 4x s obje strane.
x^{2}-4x+3=0
Sve jednačine u obrascu ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna formula daje dva rješenja, jedno kada je ± sabiranje, a drugo kada je oduzimanje.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3}}{2}
Ova jednačina je u standardnom obliku: ax^{2}+bx+c=0. Zamijenite 1 i a, -4 i b, kao i 3 i c u kvadratnoj formuli, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 3}}{2}
Izračunajte kvadrat od -4.
x=\frac{-\left(-4\right)±\sqrt{16-12}}{2}
Pomnožite -4 i 3.
x=\frac{-\left(-4\right)±\sqrt{4}}{2}
Saberite 16 i -12.
x=\frac{-\left(-4\right)±2}{2}
Izračunajte kvadratni korijen od 4.
x=\frac{4±2}{2}
Opozit broja -4 je 4.
x=\frac{6}{2}
Sada riješite jednačinu x=\frac{4±2}{2} kada je ± plus. Saberite 4 i 2.
x=3
Podijelite 6 sa 2.
x=\frac{2}{2}
Sada riješite jednačinu x=\frac{4±2}{2} kada je ± minus. Oduzmite 2 od 4.
x=1
Podijelite 2 sa 2.
x=3 x=1
Jednačina je riješena.
x^{2}+3-4x=0
Oduzmite 4x s obje strane.
x^{2}-4x=-3
Oduzmite 3 s obje strane. Bilo šta oduzeto od nule daje svoju negaciju.
x^{2}-4x+\left(-2\right)^{2}=-3+\left(-2\right)^{2}
Podijelite -4, koeficijent izraza x, sa 2 da biste dobili -2. Zatim dodajte kvadrat od -2 na obje strane jednačine. Ovaj korak čini lijevu stranu jednačine savršenim kvadratom.
x^{2}-4x+4=-3+4
Izračunajte kvadrat od -2.
x^{2}-4x+4=1
Saberite -3 i 4.
\left(x-2\right)^{2}=1
Faktor x^{2}-4x+4. Generalno, kada je x^{2}+bx+c savršen kvadrat, uvijek se može uračunati kao \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{1}
Izračunajte kvadratni korijen od obje strane jednačine.
x-2=1 x-2=-1
Pojednostavite.
x=3 x=1
Dodajte 2 na obje strane jednačine.