Preskoči na glavni sadržaj
Riješite za x
Tick mark Image
Graf

Slični problemi iz web pretrage

Dijeliti

x^{2}+2x+5-8=0
Oduzmite 8 s obje strane.
x^{2}+2x-3=0
Oduzmite 8 od 5 da biste dobili -3.
a+b=2 ab=-3
Da biste riješili jednadžbu, faktorišite x^{2}+2x-3 koristeći formulu x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Da biste pronašli a i b, uspostavite sistem koji treba riješiti.
a=-1 b=3
Pošto je ab negativno, a a b ima suprotan znak. Pošto je a+b pozitivno, pozitivan broj ima veću apsolutnu vrijednost od negativnog. Jedini takav par je rješenje sistema.
\left(x-1\right)\left(x+3\right)
Ponovo napišite faktorisani izraz \left(x+a\right)\left(x+b\right) pomoću dobijenih korena.
x=1 x=-3
Da biste došli do rješenja jednadžbe, riješite x-1=0 i x+3=0.
x^{2}+2x+5-8=0
Oduzmite 8 s obje strane.
x^{2}+2x-3=0
Oduzmite 8 od 5 da biste dobili -3.
a+b=2 ab=1\left(-3\right)=-3
Da biste riješili jednadžbu, faktorišite lijevu stranu grupisanjem. Prvo, lijevu stranu treba prepisati kao x^{2}+ax+bx-3. Da biste pronašli a i b, uspostavite sistem koji treba riješiti.
a=-1 b=3
Pošto je ab negativno, a a b ima suprotan znak. Pošto je a+b pozitivno, pozitivan broj ima veću apsolutnu vrijednost od negativnog. Jedini takav par je rješenje sistema.
\left(x^{2}-x\right)+\left(3x-3\right)
Ponovo napišite x^{2}+2x-3 kao \left(x^{2}-x\right)+\left(3x-3\right).
x\left(x-1\right)+3\left(x-1\right)
Isključite x u prvoj i 3 drugoj grupi.
\left(x-1\right)\left(x+3\right)
Izdvojite obični izraz x-1 koristeći svojstvo distribucije.
x=1 x=-3
Da biste došli do rješenja jednadžbe, riješite x-1=0 i x+3=0.
x^{2}+2x+5=8
Sve jednačine u obrascu ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna formula daje dva rješenja, jedno kada je ± sabiranje, a drugo kada je oduzimanje.
x^{2}+2x+5-8=8-8
Oduzmite 8 s obje strane jednačine.
x^{2}+2x+5-8=0
Oduzimanjem 8 od samog sebe ostaje 0.
x^{2}+2x-3=0
Oduzmite 8 od 5.
x=\frac{-2±\sqrt{2^{2}-4\left(-3\right)}}{2}
Ova jednačina je u standardnom obliku: ax^{2}+bx+c=0. Zamijenite 1 i a, 2 i b, kao i -3 i c u kvadratnoj formuli, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-3\right)}}{2}
Izračunajte kvadrat od 2.
x=\frac{-2±\sqrt{4+12}}{2}
Pomnožite -4 i -3.
x=\frac{-2±\sqrt{16}}{2}
Saberite 4 i 12.
x=\frac{-2±4}{2}
Izračunajte kvadratni korijen od 16.
x=\frac{2}{2}
Sada riješite jednačinu x=\frac{-2±4}{2} kada je ± plus. Saberite -2 i 4.
x=1
Podijelite 2 sa 2.
x=-\frac{6}{2}
Sada riješite jednačinu x=\frac{-2±4}{2} kada je ± minus. Oduzmite 4 od -2.
x=-3
Podijelite -6 sa 2.
x=1 x=-3
Jednačina je riješena.
x^{2}+2x+5=8
Kvadratne jednačine kao što je ova mogu se riješiti dovršavanjem kvadrata. Da bi se dovršio kvadrat, jednačina mora biti u obliku x^{2}+bx=c.
x^{2}+2x+5-5=8-5
Oduzmite 5 s obje strane jednačine.
x^{2}+2x=8-5
Oduzimanjem 5 od samog sebe ostaje 0.
x^{2}+2x=3
Oduzmite 5 od 8.
x^{2}+2x+1^{2}=3+1^{2}
Podijelite 2, koeficijent izraza x, sa 2 da biste dobili 1. Zatim dodajte kvadrat od 1 na obje strane jednačine. Ovaj korak čini lijevu stranu jednačine savršenim kvadratom.
x^{2}+2x+1=3+1
Izračunajte kvadrat od 1.
x^{2}+2x+1=4
Saberite 3 i 1.
\left(x+1\right)^{2}=4
Faktor x^{2}+2x+1. Generalno, kada je x^{2}+bx+c savršen kvadrat, uvijek se može uračunati kao \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{4}
Izračunajte kvadratni korijen od obje strane jednačine.
x+1=2 x+1=-2
Pojednostavite.
x=1 x=-3
Oduzmite 1 s obje strane jednačine.