Riješite za k (complex solution)
k=e^{\frac{Im(x)arg(x^{x})+iRe(x)arg(x^{x})}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}-\frac{2\pi n_{1}iRe(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}-\frac{2\pi n_{1}Im(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}}\left(|x^{x}|\right)^{\frac{Re(x)-iIm(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}}
n_{1}\in \mathrm{Z}
Riješite za k
\left\{\begin{matrix}k=\left(x^{x}\right)^{\frac{1}{x}}\text{, }&\left(x^{x}<0\text{ and }Numerator(x)\text{bmod}2=1\text{ and }Denominator(x)\text{bmod}2=1\text{ and }x<0\right)\text{ or }\left(Numerator(x)\text{bmod}2=1\text{ and }Denominator(x)\text{bmod}2=1\text{ and }x>0\right)\text{ or }\left(Denominator(x)\text{bmod}2=1\text{ and }x<0\text{ and }x^{x}>0\right)\text{ or }\left(\left(x^{x}\right)^{\frac{1}{x}}>0\text{ and }x>0\text{ and }x^{x}\geq 0\right)\text{ or }\left(\left(x^{x}\right)^{\frac{1}{x}}<0\text{ and }x^{x}\geq 0\text{ and }Denominator(x)\text{bmod}2=1\text{ and }x>0\right)\\k=-\left(x^{x}\right)^{\frac{1}{x}}\text{, }&\left(x>0\text{ and }Numerator(x)\text{bmod}2=0\text{ and }Numerator(x)\text{bmod}2=1\text{ and }Denominator(x)\text{bmod}2=1\right)\text{ or }\left(x^{x}<0\text{ and }Numerator(x)\text{bmod}2=1\text{ and }Denominator(x)\text{bmod}2=1\text{ and }x<0\text{ and }Numerator(x)\text{bmod}2=0\right)\text{ or }\left(Denominator(x)\text{bmod}2=1\text{ and }x<0\text{ and }x^{x}>0\text{ and }Numerator(x)\text{bmod}2=0\right)\text{ or }\left(x>0\text{ and }\left(x^{x}\right)^{\frac{1}{x}}<0\text{ and }Numerator(x)\text{bmod}2=0\text{ and }x^{x}\geq 0\right)\text{ or }\left(x>0\text{ and }\left(x^{x}\right)^{\frac{1}{x}}>0\text{ and }Numerator(x)\text{bmod}2=0\text{ and }x^{x}\geq 0\text{ and }Denominator(x)\text{bmod}2=1\right)\end{matrix}\right,
Riješite za x
\left\{\begin{matrix}x=k\text{, }&\left(k<0\text{ and }Denominator(k)\text{bmod}2=1\right)\text{ or }k>0\\x=-k\text{, }&Numerator(k)\text{bmod}2=0\text{ and }Denominator(k)\text{bmod}2=1\text{ and }k\neq 0\end{matrix}\right,
Graf
Dijeliti
Kopirano u clipboard
Primjeri
kvadratna jednacina
{ x } ^ { 2 } - 4 x - 5 = 0
trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednačina
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultana jednačina
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}