Preskoči na glavni sadržaj
Faktor
Tick mark Image
Procijeni
Tick mark Image

Slični problemi iz web pretrage

Dijeliti

a+b=-8 ab=1\times 12=12
Faktorišite izraz grupisanjem. Prvo, izraz treba prepisati kao h^{2}+ah+bh+12. Da biste pronašli a i b, uspostavite sistem koji treba riješiti.
-1,-12 -2,-6 -3,-4
Pošto je ab pozitivno, a a b ima isti znak. Pošto je a+b negativno, a a b su oba negativna. Navedite sve parove cijelih brojeva koji daju proizvod 12.
-1-12=-13 -2-6=-8 -3-4=-7
Izračunajte sumu za svaki par.
a=-6 b=-2
Rješenje je njihov par koji daje sumu -8.
\left(h^{2}-6h\right)+\left(-2h+12\right)
Ponovo napišite h^{2}-8h+12 kao \left(h^{2}-6h\right)+\left(-2h+12\right).
h\left(h-6\right)-2\left(h-6\right)
Isključite h u prvoj i -2 drugoj grupi.
\left(h-6\right)\left(h-2\right)
Izdvojite obični izraz h-6 koristeći svojstvo distribucije.
h^{2}-8h+12=0
Kvadratni polinom se može faktorirati pomoću transformacije ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), pri čemu x_{1} i x_{2} predstavlјaju rješenja kvadratne jednačine ax^{2}+bx+c=0.
h=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 12}}{2}
Sve jednačine u obrascu ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna formula daje dva rješenja, jedno kada je ± sabiranje, a drugo kada je oduzimanje.
h=\frac{-\left(-8\right)±\sqrt{64-4\times 12}}{2}
Izračunajte kvadrat od -8.
h=\frac{-\left(-8\right)±\sqrt{64-48}}{2}
Pomnožite -4 i 12.
h=\frac{-\left(-8\right)±\sqrt{16}}{2}
Saberite 64 i -48.
h=\frac{-\left(-8\right)±4}{2}
Izračunajte kvadratni korijen od 16.
h=\frac{8±4}{2}
Opozit broja -8 je 8.
h=\frac{12}{2}
Sada riješite jednačinu h=\frac{8±4}{2} kada je ± plus. Saberite 8 i 4.
h=6
Podijelite 12 sa 2.
h=\frac{4}{2}
Sada riješite jednačinu h=\frac{8±4}{2} kada je ± minus. Oduzmite 4 od 8.
h=2
Podijelite 4 sa 2.
h^{2}-8h+12=\left(h-6\right)\left(h-2\right)
Faktorirajte originalni izraz koristeći ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Zamijenite 6 sa x_{1} i 2 sa x_{2}.