Preskoči na glavni sadržaj
Faktor
Tick mark Image
Procijeni
Tick mark Image
Graf

Slični problemi iz web pretrage

Dijeliti

a+b=-1 ab=1\left(-12\right)=-12
Faktorišite izraz grupisanjem. Prvo, izraz treba prepisati kao x^{2}+ax+bx-12. Da biste pronašli a i b, uspostavite sistem koji treba riješiti.
1,-12 2,-6 3,-4
Pošto je ab negativno, a a b ima suprotan znak. Pošto je a+b negativan, negativan broj ima veću apsolutnu vrijednost od pozitivnog. Navedite sve parove cijelih brojeva koji daju proizvod -12.
1-12=-11 2-6=-4 3-4=-1
Izračunajte sumu za svaki par.
a=-4 b=3
Rješenje je njihov par koji daje sumu -1.
\left(x^{2}-4x\right)+\left(3x-12\right)
Ponovo napišite x^{2}-x-12 kao \left(x^{2}-4x\right)+\left(3x-12\right).
x\left(x-4\right)+3\left(x-4\right)
Isključite x u prvoj i 3 drugoj grupi.
\left(x-4\right)\left(x+3\right)
Izdvojite obični izraz x-4 koristeći svojstvo distribucije.
x^{2}-x-12=0
Kvadratni polinom se može faktorirati pomoću transformacije ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), pri čemu x_{1} i x_{2} predstavlјaju rješenja kvadratne jednačine ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-12\right)}}{2}
Sve jednačine u obrascu ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna formula daje dva rješenja, jedno kada je ± sabiranje, a drugo kada je oduzimanje.
x=\frac{-\left(-1\right)±\sqrt{1+48}}{2}
Pomnožite -4 i -12.
x=\frac{-\left(-1\right)±\sqrt{49}}{2}
Saberite 1 i 48.
x=\frac{-\left(-1\right)±7}{2}
Izračunajte kvadratni korijen od 49.
x=\frac{1±7}{2}
Opozit broja -1 je 1.
x=\frac{8}{2}
Sada riješite jednačinu x=\frac{1±7}{2} kada je ± plus. Saberite 1 i 7.
x=4
Podijelite 8 sa 2.
x=-\frac{6}{2}
Sada riješite jednačinu x=\frac{1±7}{2} kada je ± minus. Oduzmite 7 od 1.
x=-3
Podijelite -6 sa 2.
x^{2}-x-12=\left(x-4\right)\left(x-\left(-3\right)\right)
Faktorirajte originalni izraz koristeći ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Zamijenite 4 sa x_{1} i -3 sa x_{2}.
x^{2}-x-12=\left(x-4\right)\left(x+3\right)
Pojednostavite sve izraze koji imaju oblik p-\left(-q\right) u p+q.