Preskoči na glavni sadržaj
Faktor
Tick mark Image
Procijeni
Tick mark Image
Graf

Slični problemi iz web pretrage

Dijeliti

7x^{2}+x-1=0
Kvadratni polinom se može faktorirati pomoću transformacije ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), pri čemu x_{1} i x_{2} predstavlјaju rješenja kvadratne jednačine ax^{2}+bx+c=0.
x=\frac{-1±\sqrt{1^{2}-4\times 7\left(-1\right)}}{2\times 7}
Sve jednačine u obrascu ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna formula daje dva rješenja, jedno kada je ± sabiranje, a drugo kada je oduzimanje.
x=\frac{-1±\sqrt{1-4\times 7\left(-1\right)}}{2\times 7}
Izračunajte kvadrat od 1.
x=\frac{-1±\sqrt{1-28\left(-1\right)}}{2\times 7}
Pomnožite -4 i 7.
x=\frac{-1±\sqrt{1+28}}{2\times 7}
Pomnožite -28 i -1.
x=\frac{-1±\sqrt{29}}{2\times 7}
Saberite 1 i 28.
x=\frac{-1±\sqrt{29}}{14}
Pomnožite 2 i 7.
x=\frac{\sqrt{29}-1}{14}
Sada riješite jednačinu x=\frac{-1±\sqrt{29}}{14} kada je ± plus. Saberite -1 i \sqrt{29}.
x=\frac{-\sqrt{29}-1}{14}
Sada riješite jednačinu x=\frac{-1±\sqrt{29}}{14} kada je ± minus. Oduzmite \sqrt{29} od -1.
7x^{2}+x-1=7\left(x-\frac{\sqrt{29}-1}{14}\right)\left(x-\frac{-\sqrt{29}-1}{14}\right)
Faktorirajte originalni izraz koristeći ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Zamijenite \frac{-1+\sqrt{29}}{14} sa x_{1} i \frac{-1-\sqrt{29}}{14} sa x_{2}.