Preskoči na glavni sadržaj
Faktor
Tick mark Image
Procijeni
Tick mark Image
Graf

Slični problemi iz web pretrage

Dijeliti

-x^{2}+2x+3
Prerasporedite jednačinu da biste je stavili u standardni oblik. Postavite termine redoslijedom od najvišeg do najnižeg stepena.
a+b=2 ab=-3=-3
Faktorišite izraz grupisanjem. Prvo, izraz treba prepisati kao -x^{2}+ax+bx+3. Da biste pronašli a i b, uspostavite sistem koji treba riješiti.
a=3 b=-1
Pošto je ab negativno, a a b ima suprotan znak. Pošto je a+b pozitivno, pozitivan broj ima veću apsolutnu vrijednost od negativnog. Jedini takav par je rješenje sistema.
\left(-x^{2}+3x\right)+\left(-x+3\right)
Ponovo napišite -x^{2}+2x+3 kao \left(-x^{2}+3x\right)+\left(-x+3\right).
-x\left(x-3\right)-\left(x-3\right)
Isključite -x u prvoj i -1 drugoj grupi.
\left(x-3\right)\left(-x-1\right)
Izdvojite obični izraz x-3 koristeći svojstvo distribucije.
-x^{2}+2x+3=0
Kvadratni polinom se može faktorirati pomoću transformacije ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), pri čemu x_{1} i x_{2} predstavlјaju rješenja kvadratne jednačine ax^{2}+bx+c=0.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
Sve jednačine u obrascu ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna formula daje dva rješenja, jedno kada je ± sabiranje, a drugo kada je oduzimanje.
x=\frac{-2±\sqrt{4-4\left(-1\right)\times 3}}{2\left(-1\right)}
Izračunajte kvadrat od 2.
x=\frac{-2±\sqrt{4+4\times 3}}{2\left(-1\right)}
Pomnožite -4 i -1.
x=\frac{-2±\sqrt{4+12}}{2\left(-1\right)}
Pomnožite 4 i 3.
x=\frac{-2±\sqrt{16}}{2\left(-1\right)}
Saberite 4 i 12.
x=\frac{-2±4}{2\left(-1\right)}
Izračunajte kvadratni korijen od 16.
x=\frac{-2±4}{-2}
Pomnožite 2 i -1.
x=\frac{2}{-2}
Sada riješite jednačinu x=\frac{-2±4}{-2} kada je ± plus. Saberite -2 i 4.
x=-1
Podijelite 2 sa -2.
x=-\frac{6}{-2}
Sada riješite jednačinu x=\frac{-2±4}{-2} kada je ± minus. Oduzmite 4 od -2.
x=3
Podijelite -6 sa -2.
-x^{2}+2x+3=-\left(x-\left(-1\right)\right)\left(x-3\right)
Faktorirajte originalni izraz koristeći ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Zamijenite -1 sa x_{1} i 3 sa x_{2}.
-x^{2}+2x+3=-\left(x+1\right)\left(x-3\right)
Pojednostavite sve izraze koji imaju oblik p-\left(-q\right) u p+q.