Faktor
\frac{\left(x-2\right)\left(2-2x-x^{2}\right)}{2}
Procijeni
-\frac{x^{3}}{2}+3x-2
Graf
Dijeliti
Kopirano u clipboard
\frac{-x^{3}+6x-4}{2}
Izbacite \frac{1}{2}.
\left(x-2\right)\left(-x^{2}-2x+2\right)
Razmotrite -x^{3}+6x-4. Prema teoremi racionalnih korijena, svi racionalni korijeni polinoma su u obliku \frac{p}{q}, gdje p dijeli termin konstante -4 i q dijeli uvodni koeficijent -1. Jedan takav korijen je 2. Faktorirajte polinom tako što ćete ga podijeliti sa x-2.
\frac{\left(x-2\right)\left(-x^{2}-2x+2\right)}{2}
Ponovo napišite cijeli faktorirani izraz. Polinom -x^{2}-2x+2 nije faktoriran budući da nema nijedan racionalni korijen.
Primjeri
kvadratna jednacina
{ x } ^ { 2 } - 4 x - 5 = 0
trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednačina
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultana jednačina
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}