Procijeni
\frac{3}{x-1}
Proširi
\frac{3}{x-1}
Graf
Dijeliti
Kopirano u clipboard
\left(\frac{\left(x+1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\frac{x^{2}+2x+1}{x^{2}+3x+2}\right)\times \frac{x+2}{x+1}
Faktorirajte izraze koji nisu već faktorirani u \frac{x^{2}+4x+3}{x^{2}+2x-3}.
\left(\frac{x+1}{x-1}-\frac{x^{2}+2x+1}{x^{2}+3x+2}\right)\times \frac{x+2}{x+1}
Otkaži x+3 u brojiocu i imeniocu.
\left(\frac{x+1}{x-1}-\frac{\left(x+1\right)^{2}}{\left(x+1\right)\left(x+2\right)}\right)\times \frac{x+2}{x+1}
Faktorirajte izraze koji nisu već faktorirani u \frac{x^{2}+2x+1}{x^{2}+3x+2}.
\left(\frac{x+1}{x-1}-\frac{x+1}{x+2}\right)\times \frac{x+2}{x+1}
Otkaži x+1 u brojiocu i imeniocu.
\left(\frac{\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}-\frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}\right)\times \frac{x+2}{x+1}
Da biste izvršili zbrajanje ili oduzimanje izraza, rastavite ih kako bi im nazivnici bili isti. Najmanji zajednički množilac brojeva x-1 i x+2 je \left(x-1\right)\left(x+2\right). Pomnožite \frac{x+1}{x-1} i \frac{x+2}{x+2}. Pomnožite \frac{x+1}{x+2} i \frac{x-1}{x-1}.
\frac{\left(x+1\right)\left(x+2\right)-\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}\times \frac{x+2}{x+1}
Pošto \frac{\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)} i \frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)} imaju isti imenilac, oduzmite ih tako što ćete oduzeti njihove brojioce.
\frac{x^{2}+2x+x+2-x^{2}+x-x+1}{\left(x-1\right)\left(x+2\right)}\times \frac{x+2}{x+1}
Izvršite množenja u \left(x+1\right)\left(x+2\right)-\left(x+1\right)\left(x-1\right).
\frac{3x+3}{\left(x-1\right)\left(x+2\right)}\times \frac{x+2}{x+1}
Kombinirajte slične izraze u x^{2}+2x+x+2-x^{2}+x-x+1.
\frac{\left(3x+3\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)\left(x+1\right)}
Pomnožite \frac{3x+3}{\left(x-1\right)\left(x+2\right)} i \frac{x+2}{x+1} tako što ćete pomnožiti brojilac s brojiocem i imenilac s imeniocem.
\frac{3x+3}{\left(x-1\right)\left(x+1\right)}
Otkaži x+2 u brojiocu i imeniocu.
\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}
Faktorirajte izraze koji nisu već faktorirani.
\frac{3}{x-1}
Otkaži x+1 u brojiocu i imeniocu.
\left(\frac{\left(x+1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\frac{x^{2}+2x+1}{x^{2}+3x+2}\right)\times \frac{x+2}{x+1}
Faktorirajte izraze koji nisu već faktorirani u \frac{x^{2}+4x+3}{x^{2}+2x-3}.
\left(\frac{x+1}{x-1}-\frac{x^{2}+2x+1}{x^{2}+3x+2}\right)\times \frac{x+2}{x+1}
Otkaži x+3 u brojiocu i imeniocu.
\left(\frac{x+1}{x-1}-\frac{\left(x+1\right)^{2}}{\left(x+1\right)\left(x+2\right)}\right)\times \frac{x+2}{x+1}
Faktorirajte izraze koji nisu već faktorirani u \frac{x^{2}+2x+1}{x^{2}+3x+2}.
\left(\frac{x+1}{x-1}-\frac{x+1}{x+2}\right)\times \frac{x+2}{x+1}
Otkaži x+1 u brojiocu i imeniocu.
\left(\frac{\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}-\frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}\right)\times \frac{x+2}{x+1}
Da biste izvršili zbrajanje ili oduzimanje izraza, rastavite ih kako bi im nazivnici bili isti. Najmanji zajednički množilac brojeva x-1 i x+2 je \left(x-1\right)\left(x+2\right). Pomnožite \frac{x+1}{x-1} i \frac{x+2}{x+2}. Pomnožite \frac{x+1}{x+2} i \frac{x-1}{x-1}.
\frac{\left(x+1\right)\left(x+2\right)-\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}\times \frac{x+2}{x+1}
Pošto \frac{\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)} i \frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)} imaju isti imenilac, oduzmite ih tako što ćete oduzeti njihove brojioce.
\frac{x^{2}+2x+x+2-x^{2}+x-x+1}{\left(x-1\right)\left(x+2\right)}\times \frac{x+2}{x+1}
Izvršite množenja u \left(x+1\right)\left(x+2\right)-\left(x+1\right)\left(x-1\right).
\frac{3x+3}{\left(x-1\right)\left(x+2\right)}\times \frac{x+2}{x+1}
Kombinirajte slične izraze u x^{2}+2x+x+2-x^{2}+x-x+1.
\frac{\left(3x+3\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)\left(x+1\right)}
Pomnožite \frac{3x+3}{\left(x-1\right)\left(x+2\right)} i \frac{x+2}{x+1} tako što ćete pomnožiti brojilac s brojiocem i imenilac s imeniocem.
\frac{3x+3}{\left(x-1\right)\left(x+1\right)}
Otkaži x+2 u brojiocu i imeniocu.
\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}
Faktorirajte izraze koji nisu već faktorirani.
\frac{3}{x-1}
Otkaži x+1 u brojiocu i imeniocu.
Primjeri
kvadratna jednacina
{ x } ^ { 2 } - 4 x - 5 = 0
trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednačina
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultana jednačina
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}