Preskoči na glavni sadržaj
Procijeni
Tick mark Image
Faktor
Tick mark Image

Dijeliti

99 \cdot 19 \sqrt{2} / 9 {(\frac{2}{100} 5 \sqrt{5})} 6 - 5 + 2 \cdot 99 \cdot 0,9961946980917455
Evaluate trigonometric functions in the problem
6\times \frac{1881\sqrt{2}}{9}\times 5\times \frac{2}{100}\sqrt{5}-5+2\times 99\times 0,9961946980917455
Pomnožite 19 i 99 da biste dobili 1881.
6\times 209\sqrt{2}\times 5\times \frac{2}{100}\sqrt{5}-5+2\times 99\times 0,9961946980917455
Podijelite 1881\sqrt{2} sa 9 da biste dobili 209\sqrt{2}.
1254\sqrt{2}\times 5\times \frac{2}{100}\sqrt{5}-5+2\times 99\times 0,9961946980917455
Pomnožite 6 i 209 da biste dobili 1254.
6270\sqrt{2}\times \frac{2}{100}\sqrt{5}-5+2\times 99\times 0,9961946980917455
Pomnožite 1254 i 5 da biste dobili 6270.
6270\sqrt{2}\times \frac{1}{50}\sqrt{5}-5+2\times 99\times 0,9961946980917455
Svedite razlomak \frac{2}{100} na najprostije elemente rastavlјanjem i kraćenjem 2.
\frac{6270}{50}\sqrt{2}\sqrt{5}-5+2\times 99\times 0,9961946980917455
Pomnožite 6270 i \frac{1}{50} da biste dobili \frac{6270}{50}.
\frac{627}{5}\sqrt{2}\sqrt{5}-5+2\times 99\times 0,9961946980917455
Svedite razlomak \frac{6270}{50} na najprostije elemente rastavlјanjem i kraćenjem 10.
\frac{627}{5}\sqrt{10}-5+2\times 99\times 0,9961946980917455
Da biste pomnožili \sqrt{2} i \sqrt{5}, pomnožite brojeve u okviru kvadratnog korijena.
\frac{627}{5}\sqrt{10}-5+198\times 0,9961946980917455
Pomnožite 2 i 99 da biste dobili 198.
\frac{627}{5}\sqrt{10}-5+197,246550222165609
Pomnožite 198 i 0,9961946980917455 da biste dobili 197,246550222165609.
\frac{627}{5}\sqrt{10}+192,246550222165609
Saberite -5 i 197,246550222165609 da biste dobili 192,246550222165609.