Faktor
x\left(x-1\right)\left(3x-1\right)\left(2x+1\right)
Procijeni
x\left(x-1\right)\left(3x-1\right)\left(2x+1\right)
Graf
Dijeliti
Kopirano u clipboard
x\left(6x^{3}-5x^{2}-2x+1\right)
Izbacite x.
\left(2x+1\right)\left(3x^{2}-4x+1\right)
Razmotrite 6x^{3}-5x^{2}-2x+1. Prema teoremi racionalnih korijena, svi racionalni korijeni polinoma su u obliku \frac{p}{q}, gdje p dijeli termin konstante 1 i q dijeli uvodni koeficijent 6. Jedan takav korijen je -\frac{1}{2}. Faktorirajte polinom tako što ćete ga podijeliti sa 2x+1.
a+b=-4 ab=3\times 1=3
Razmotrite 3x^{2}-4x+1. Faktorišite izraz grupisanjem. Prvo, izraz treba prepisati kao 3x^{2}+ax+bx+1. Da biste pronašli a i b, uspostavite sistem koji treba riješiti.
a=-3 b=-1
Pošto je ab pozitivno, a a b ima isti znak. Pošto je a+b negativno, a a b su oba negativna. Jedini takav par je rješenje sistema.
\left(3x^{2}-3x\right)+\left(-x+1\right)
Ponovo napišite 3x^{2}-4x+1 kao \left(3x^{2}-3x\right)+\left(-x+1\right).
3x\left(x-1\right)-\left(x-1\right)
Isključite 3x u prvoj i -1 drugoj grupi.
\left(x-1\right)\left(3x-1\right)
Izdvojite obični izraz x-1 koristeći svojstvo distribucije.
x\left(2x+1\right)\left(x-1\right)\left(3x-1\right)
Ponovo napišite cijeli faktorirani izraz.
Primjeri
kvadratna jednacina
{ x } ^ { 2 } - 4 x - 5 = 0
trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednačina
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultana jednačina
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}