Preskoči na glavni sadržaj
Faktor
Tick mark Image
Procijeni
Tick mark Image
Graf

Slični problemi iz web pretrage

Dijeliti

6\left(x^{2}-x\right)
Izbacite 6.
x\left(x-1\right)
Razmotrite x^{2}-x. Izbacite x.
6x\left(x-1\right)
Ponovo napišite cijeli faktorirani izraz.
6x^{2}-6x=0
Kvadratni polinom se može faktorirati pomoću transformacije ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), pri čemu x_{1} i x_{2} predstavlјaju rješenja kvadratne jednačine ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}}}{2\times 6}
Sve jednačine u obrascu ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna formula daje dva rješenja, jedno kada je ± sabiranje, a drugo kada je oduzimanje.
x=\frac{-\left(-6\right)±6}{2\times 6}
Izračunajte kvadratni korijen od \left(-6\right)^{2}.
x=\frac{6±6}{2\times 6}
Opozit broja -6 je 6.
x=\frac{6±6}{12}
Pomnožite 2 i 6.
x=\frac{12}{12}
Sada riješite jednačinu x=\frac{6±6}{12} kada je ± plus. Saberite 6 i 6.
x=1
Podijelite 12 sa 12.
x=\frac{0}{12}
Sada riješite jednačinu x=\frac{6±6}{12} kada je ± minus. Oduzmite 6 od 6.
x=0
Podijelite 0 sa 12.
6x^{2}-6x=6\left(x-1\right)x
Faktorirajte originalni izraz koristeći ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Zamijenite 1 sa x_{1} i 0 sa x_{2}.