Faktor
\left(2x-3\right)\left(3x-2\right)
Procijeni
\left(2x-3\right)\left(3x-2\right)
Graf
Dijeliti
Kopirano u clipboard
a+b=-13 ab=6\times 6=36
Faktorišite izraz grupisanjem. Prvo, izraz treba prepisati kao 6x^{2}+ax+bx+6. Da biste pronašli a i b, uspostavite sistem koji treba riješiti.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
Pošto je ab pozitivno, a a b ima isti znak. Pošto je a+b negativno, a a b su oba negativna. Navedite sve parove cijelih brojeva koji daju proizvod 36.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
Izračunajte sumu za svaki par.
a=-9 b=-4
Rješenje je njihov par koji daje sumu -13.
\left(6x^{2}-9x\right)+\left(-4x+6\right)
Ponovo napišite 6x^{2}-13x+6 kao \left(6x^{2}-9x\right)+\left(-4x+6\right).
3x\left(2x-3\right)-2\left(2x-3\right)
Isključite 3x u prvoj i -2 drugoj grupi.
\left(2x-3\right)\left(3x-2\right)
Izdvojite obični izraz 2x-3 koristeći svojstvo distribucije.
6x^{2}-13x+6=0
Kvadratni polinom se može faktorirati pomoću transformacije ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), pri čemu x_{1} i x_{2} predstavlјaju rješenja kvadratne jednačine ax^{2}+bx+c=0.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 6\times 6}}{2\times 6}
Sve jednačine u obrascu ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna formula daje dva rješenja, jedno kada je ± sabiranje, a drugo kada je oduzimanje.
x=\frac{-\left(-13\right)±\sqrt{169-4\times 6\times 6}}{2\times 6}
Izračunajte kvadrat od -13.
x=\frac{-\left(-13\right)±\sqrt{169-24\times 6}}{2\times 6}
Pomnožite -4 i 6.
x=\frac{-\left(-13\right)±\sqrt{169-144}}{2\times 6}
Pomnožite -24 i 6.
x=\frac{-\left(-13\right)±\sqrt{25}}{2\times 6}
Saberite 169 i -144.
x=\frac{-\left(-13\right)±5}{2\times 6}
Izračunajte kvadratni korijen od 25.
x=\frac{13±5}{2\times 6}
Opozit broja -13 je 13.
x=\frac{13±5}{12}
Pomnožite 2 i 6.
x=\frac{18}{12}
Sada riješite jednačinu x=\frac{13±5}{12} kada je ± plus. Saberite 13 i 5.
x=\frac{3}{2}
Svedite razlomak \frac{18}{12} na najprostije elemente rastavlјanjem i kraćenjem 6.
x=\frac{8}{12}
Sada riješite jednačinu x=\frac{13±5}{12} kada je ± minus. Oduzmite 5 od 13.
x=\frac{2}{3}
Svedite razlomak \frac{8}{12} na najprostije elemente rastavlјanjem i kraćenjem 4.
6x^{2}-13x+6=6\left(x-\frac{3}{2}\right)\left(x-\frac{2}{3}\right)
Faktorirajte originalni izraz koristeći ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Zamijenite \frac{3}{2} sa x_{1} i \frac{2}{3} sa x_{2}.
6x^{2}-13x+6=6\times \frac{2x-3}{2}\left(x-\frac{2}{3}\right)
Oduzmite \frac{3}{2} od x tako što ćete pronaći zajednički imenilac i oduzeti brojioce. Zatim svedite razlomak na najniže termine ukoliko je moguće.
6x^{2}-13x+6=6\times \frac{2x-3}{2}\times \frac{3x-2}{3}
Oduzmite \frac{2}{3} od x tako što ćete pronaći zajednički imenilac i oduzeti brojioce. Zatim svedite razlomak na najniže termine ukoliko je moguće.
6x^{2}-13x+6=6\times \frac{\left(2x-3\right)\left(3x-2\right)}{2\times 3}
Pomnožite \frac{2x-3}{2} i \frac{3x-2}{3} tako što ćete pomnožiti brojilac sa brojiocem i imenilac sa imeniocem. Zatim reducirajte razlomak na najniže termine ako je moguće.
6x^{2}-13x+6=6\times \frac{\left(2x-3\right)\left(3x-2\right)}{6}
Pomnožite 2 i 3.
6x^{2}-13x+6=\left(2x-3\right)\left(3x-2\right)
Poništite najveći zajednički djelilac 6 u 6 i 6.
Primjeri
kvadratna jednacina
{ x } ^ { 2 } - 4 x - 5 = 0
trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednačina
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultana jednačina
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}