Preskoči na glavni sadržaj
Faktor
Tick mark Image
Procijeni
Tick mark Image
Graf

Slični problemi iz web pretrage

Dijeliti

a+b=7 ab=6\left(-3\right)=-18
Faktorišite izraz grupisanjem. Prvo, izraz treba prepisati kao 6x^{2}+ax+bx-3. Da biste pronašli a i b, uspostavite sistem koji treba riješiti.
-1,18 -2,9 -3,6
Pošto je ab negativno, a a b ima suprotan znak. Pošto je a+b pozitivno, pozitivan broj ima veću apsolutnu vrijednost od negativnog. Navedite sve parove cijelih brojeva koji daju proizvod -18.
-1+18=17 -2+9=7 -3+6=3
Izračunajte sumu za svaki par.
a=-2 b=9
Rješenje je njihov par koji daje sumu 7.
\left(6x^{2}-2x\right)+\left(9x-3\right)
Ponovo napišite 6x^{2}+7x-3 kao \left(6x^{2}-2x\right)+\left(9x-3\right).
2x\left(3x-1\right)+3\left(3x-1\right)
Isključite 2x u prvoj i 3 drugoj grupi.
\left(3x-1\right)\left(2x+3\right)
Izdvojite obični izraz 3x-1 koristeći svojstvo distribucije.
6x^{2}+7x-3=0
Kvadratni polinom se može faktorirati pomoću transformacije ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), pri čemu x_{1} i x_{2} predstavlјaju rješenja kvadratne jednačine ax^{2}+bx+c=0.
x=\frac{-7±\sqrt{7^{2}-4\times 6\left(-3\right)}}{2\times 6}
Sve jednačine u obrascu ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna formula daje dva rješenja, jedno kada je ± sabiranje, a drugo kada je oduzimanje.
x=\frac{-7±\sqrt{49-4\times 6\left(-3\right)}}{2\times 6}
Izračunajte kvadrat od 7.
x=\frac{-7±\sqrt{49-24\left(-3\right)}}{2\times 6}
Pomnožite -4 i 6.
x=\frac{-7±\sqrt{49+72}}{2\times 6}
Pomnožite -24 i -3.
x=\frac{-7±\sqrt{121}}{2\times 6}
Saberite 49 i 72.
x=\frac{-7±11}{2\times 6}
Izračunajte kvadratni korijen od 121.
x=\frac{-7±11}{12}
Pomnožite 2 i 6.
x=\frac{4}{12}
Sada riješite jednačinu x=\frac{-7±11}{12} kada je ± plus. Saberite -7 i 11.
x=\frac{1}{3}
Svedite razlomak \frac{4}{12} na najprostije elemente rastavlјanjem i kraćenjem 4.
x=-\frac{18}{12}
Sada riješite jednačinu x=\frac{-7±11}{12} kada je ± minus. Oduzmite 11 od -7.
x=-\frac{3}{2}
Svedite razlomak \frac{-18}{12} na najprostije elemente rastavlјanjem i kraćenjem 6.
6x^{2}+7x-3=6\left(x-\frac{1}{3}\right)\left(x-\left(-\frac{3}{2}\right)\right)
Faktorirajte originalni izraz koristeći ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Zamijenite \frac{1}{3} sa x_{1} i -\frac{3}{2} sa x_{2}.
6x^{2}+7x-3=6\left(x-\frac{1}{3}\right)\left(x+\frac{3}{2}\right)
Pojednostavite sve izraze koji imaju oblik p-\left(-q\right) u p+q.
6x^{2}+7x-3=6\times \frac{3x-1}{3}\left(x+\frac{3}{2}\right)
Oduzmite \frac{1}{3} od x tako što ćete pronaći zajednički imenilac i oduzeti brojioce. Zatim svedite razlomak na najniže termine ukoliko je moguće.
6x^{2}+7x-3=6\times \frac{3x-1}{3}\times \frac{2x+3}{2}
Saberite \frac{3}{2} i x tako što ćete pronaći zajednički imenilac i sabrati brojioce. Zatim svedite razlomak na najniže termine ukoliko je moguće.
6x^{2}+7x-3=6\times \frac{\left(3x-1\right)\left(2x+3\right)}{3\times 2}
Pomnožite \frac{3x-1}{3} i \frac{2x+3}{2} tako što ćete pomnožiti brojilac sa brojiocem i imenilac sa imeniocem. Zatim reducirajte razlomak na najniže termine ako je moguće.
6x^{2}+7x-3=6\times \frac{\left(3x-1\right)\left(2x+3\right)}{6}
Pomnožite 3 i 2.
6x^{2}+7x-3=\left(3x-1\right)\left(2x+3\right)
Poništite najveći zajednički djelilac 6 u 6 i 6.