Riješite za y
y = \frac{50000 \sqrt{98841799974026}}{37} \approx 13435028840,779150009
y = -\frac{50000 \sqrt{98841799974026}}{37} \approx -13435028840,779150009
Dijeliti
Kopirano u clipboard
592y^{2}=106856\times 1000000000000000000-5\times 624\times 10^{9}\times 9
Izračunajte 10 stepen od 18 i dobijte 1000000000000000000.
592y^{2}=106856000000000000000000-5\times 624\times 10^{9}\times 9
Pomnožite 106856 i 1000000000000000000 da biste dobili 106856000000000000000000.
592y^{2}=106856000000000000000000-3120\times 10^{9}\times 9
Pomnožite 5 i 624 da biste dobili 3120.
592y^{2}=106856000000000000000000-3120\times 1000000000\times 9
Izračunajte 10 stepen od 9 i dobijte 1000000000.
592y^{2}=106856000000000000000000-3120000000000\times 9
Pomnožite 3120 i 1000000000 da biste dobili 3120000000000.
592y^{2}=106856000000000000000000-28080000000000
Pomnožite 3120000000000 i 9 da biste dobili 28080000000000.
592y^{2}=106855999971920000000000
Oduzmite 28080000000000 od 106856000000000000000000 da biste dobili 106855999971920000000000.
y^{2}=\frac{106855999971920000000000}{592}
Podijelite obje strane s 592.
y^{2}=\frac{6678499998245000000000}{37}
Svedite razlomak \frac{106855999971920000000000}{592} na najprostije elemente rastavlјanjem i kraćenjem 16.
y=\frac{50000\sqrt{98841799974026}}{37} y=-\frac{50000\sqrt{98841799974026}}{37}
Izračunajte kvadratni korijen od obje strane jednačine.
592y^{2}=106856\times 1000000000000000000-5\times 624\times 10^{9}\times 9
Izračunajte 10 stepen od 18 i dobijte 1000000000000000000.
592y^{2}=106856000000000000000000-5\times 624\times 10^{9}\times 9
Pomnožite 106856 i 1000000000000000000 da biste dobili 106856000000000000000000.
592y^{2}=106856000000000000000000-3120\times 10^{9}\times 9
Pomnožite 5 i 624 da biste dobili 3120.
592y^{2}=106856000000000000000000-3120\times 1000000000\times 9
Izračunajte 10 stepen od 9 i dobijte 1000000000.
592y^{2}=106856000000000000000000-3120000000000\times 9
Pomnožite 3120 i 1000000000 da biste dobili 3120000000000.
592y^{2}=106856000000000000000000-28080000000000
Pomnožite 3120000000000 i 9 da biste dobili 28080000000000.
592y^{2}=106855999971920000000000
Oduzmite 28080000000000 od 106856000000000000000000 da biste dobili 106855999971920000000000.
592y^{2}-106855999971920000000000=0
Oduzmite 106855999971920000000000 s obje strane.
y=\frac{0±\sqrt{0^{2}-4\times 592\left(-106855999971920000000000\right)}}{2\times 592}
Ova jednačina je u standardnom obliku: ax^{2}+bx+c=0. Zamijenite 592 i a, 0 i b, kao i -106855999971920000000000 i c u kvadratnoj formuli, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times 592\left(-106855999971920000000000\right)}}{2\times 592}
Izračunajte kvadrat od 0.
y=\frac{0±\sqrt{-2368\left(-106855999971920000000000\right)}}{2\times 592}
Pomnožite -4 i 592.
y=\frac{0±\sqrt{253035007933506560000000000}}{2\times 592}
Pomnožite -2368 i -106855999971920000000000.
y=\frac{0±1600000\sqrt{98841799974026}}{2\times 592}
Izračunajte kvadratni korijen od 253035007933506560000000000.
y=\frac{0±1600000\sqrt{98841799974026}}{1184}
Pomnožite 2 i 592.
y=\frac{50000\sqrt{98841799974026}}{37}
Sada riješite jednačinu y=\frac{0±1600000\sqrt{98841799974026}}{1184} kada je ± plus.
y=-\frac{50000\sqrt{98841799974026}}{37}
Sada riješite jednačinu y=\frac{0±1600000\sqrt{98841799974026}}{1184} kada je ± minus.
y=\frac{50000\sqrt{98841799974026}}{37} y=-\frac{50000\sqrt{98841799974026}}{37}
Jednačina je riješena.
Primjeri
kvadratna jednacina
{ x } ^ { 2 } - 4 x - 5 = 0
trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednačina
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultana jednačina
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}