Riješite za x
x = \frac{3}{2} = 1\frac{1}{2} = 1,5
Graf
Dijeliti
Kopirano u clipboard
a+b=-12 ab=4\times 9=36
Da biste riješili jednadžbu, faktorišite lijevu stranu grupisanjem. Prvo, lijevu stranu treba prepisati kao 4x^{2}+ax+bx+9. Da biste pronašli a i b, uspostavite sistem koji treba riješiti.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
Pošto je ab pozitivno, a a b ima isti znak. Pošto je a+b negativno, a a b su oba negativna. Navedite sve parove cijelih brojeva koji daju proizvod 36.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
Izračunajte sumu za svaki par.
a=-6 b=-6
Rješenje je njihov par koji daje sumu -12.
\left(4x^{2}-6x\right)+\left(-6x+9\right)
Ponovo napišite 4x^{2}-12x+9 kao \left(4x^{2}-6x\right)+\left(-6x+9\right).
2x\left(2x-3\right)-3\left(2x-3\right)
Isključite 2x u prvoj i -3 drugoj grupi.
\left(2x-3\right)\left(2x-3\right)
Izdvojite obični izraz 2x-3 koristeći svojstvo distribucije.
\left(2x-3\right)^{2}
Ponovo napišite kao binomni kvadrat.
x=\frac{3}{2}
Da biste došli do rješenja jednadžbe, riješite 2x-3=0.
4x^{2}-12x+9=0
Sve jednačine u obrascu ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna formula daje dva rješenja, jedno kada je ± sabiranje, a drugo kada je oduzimanje.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 4\times 9}}{2\times 4}
Ova jednačina je u standardnom obliku: ax^{2}+bx+c=0. Zamijenite 4 i a, -12 i b, kao i 9 i c u kvadratnoj formuli, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 4\times 9}}{2\times 4}
Izračunajte kvadrat od -12.
x=\frac{-\left(-12\right)±\sqrt{144-16\times 9}}{2\times 4}
Pomnožite -4 i 4.
x=\frac{-\left(-12\right)±\sqrt{144-144}}{2\times 4}
Pomnožite -16 i 9.
x=\frac{-\left(-12\right)±\sqrt{0}}{2\times 4}
Saberite 144 i -144.
x=-\frac{-12}{2\times 4}
Izračunajte kvadratni korijen od 0.
x=\frac{12}{2\times 4}
Opozit broja -12 je 12.
x=\frac{12}{8}
Pomnožite 2 i 4.
x=\frac{3}{2}
Svedite razlomak \frac{12}{8} na najprostije elemente rastavlјanjem i kraćenjem 4.
4x^{2}-12x+9=0
Kvadratne jednačine kao što je ova mogu se riješiti dovršavanjem kvadrata. Da bi se dovršio kvadrat, jednačina mora biti u obliku x^{2}+bx=c.
4x^{2}-12x+9-9=-9
Oduzmite 9 s obje strane jednačine.
4x^{2}-12x=-9
Oduzimanjem 9 od samog sebe ostaje 0.
\frac{4x^{2}-12x}{4}=-\frac{9}{4}
Podijelite obje strane s 4.
x^{2}+\left(-\frac{12}{4}\right)x=-\frac{9}{4}
Dijelјenje sa 4 poništava množenje sa 4.
x^{2}-3x=-\frac{9}{4}
Podijelite -12 sa 4.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-\frac{9}{4}+\left(-\frac{3}{2}\right)^{2}
Podijelite -3, koeficijent izraza x, sa 2 da biste dobili -\frac{3}{2}. Zatim dodajte kvadrat od -\frac{3}{2} na obje strane jednačine. Ovaj korak čini lijevu stranu jednačine savršenim kvadratom.
x^{2}-3x+\frac{9}{4}=\frac{-9+9}{4}
Izračunajte kvadrat od -\frac{3}{2} tako što ćete izračunati kvadrat od brojioca i imenioca razlomka.
x^{2}-3x+\frac{9}{4}=0
Saberite -\frac{9}{4} i \frac{9}{4} tako što ćete pronaći zajednički imenilac i sabrati brojioce. Zatim svedite razlomak na najniže termine ukoliko je moguće.
\left(x-\frac{3}{2}\right)^{2}=0
Faktor x^{2}-3x+\frac{9}{4}. Generalno, kada je x^{2}+bx+c savršen kvadrat, uvijek se može uračunati kao \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{0}
Izračunajte kvadratni korijen od obje strane jednačine.
x-\frac{3}{2}=0 x-\frac{3}{2}=0
Pojednostavite.
x=\frac{3}{2} x=\frac{3}{2}
Dodajte \frac{3}{2} na obje strane jednačine.
x=\frac{3}{2}
Jednačina je riješena. Rješenja su ista.
Primjeri
kvadratna jednacina
{ x } ^ { 2 } - 4 x - 5 = 0
trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednačina
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultana jednačina
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}