Preskoči na glavni sadržaj
Riješite za x
Tick mark Image
Graf

Slični problemi iz web pretrage

Dijeliti

4x^{2}+8x-4x=8
Oduzmite 4x s obje strane.
4x^{2}+4x=8
Kombinirajte 8x i -4x da biste dobili 4x.
4x^{2}+4x-8=0
Oduzmite 8 s obje strane.
x^{2}+x-2=0
Podijelite obje strane s 4.
a+b=1 ab=1\left(-2\right)=-2
Da biste riješili jednadžbu, faktorišite lijevu stranu grupisanjem. Prvo, lijevu stranu treba prepisati kao x^{2}+ax+bx-2. Da biste pronašli a i b, uspostavite sistem koji treba riješiti.
a=-1 b=2
Pošto je ab negativno, a a b ima suprotan znak. Pošto je a+b pozitivno, pozitivan broj ima veću apsolutnu vrijednost od negativnog. Jedini takav par je rješenje sistema.
\left(x^{2}-x\right)+\left(2x-2\right)
Ponovo napišite x^{2}+x-2 kao \left(x^{2}-x\right)+\left(2x-2\right).
x\left(x-1\right)+2\left(x-1\right)
Isključite x u prvoj i 2 drugoj grupi.
\left(x-1\right)\left(x+2\right)
Izdvojite obični izraz x-1 koristeći svojstvo distribucije.
x=1 x=-2
Da biste došli do rješenja jednadžbe, riješite x-1=0 i x+2=0.
4x^{2}+8x-4x=8
Oduzmite 4x s obje strane.
4x^{2}+4x=8
Kombinirajte 8x i -4x da biste dobili 4x.
4x^{2}+4x-8=0
Oduzmite 8 s obje strane.
x=\frac{-4±\sqrt{4^{2}-4\times 4\left(-8\right)}}{2\times 4}
Ova jednačina je u standardnom obliku: ax^{2}+bx+c=0. Zamijenite 4 i a, 4 i b, kao i -8 i c u kvadratnoj formuli, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 4\left(-8\right)}}{2\times 4}
Izračunajte kvadrat od 4.
x=\frac{-4±\sqrt{16-16\left(-8\right)}}{2\times 4}
Pomnožite -4 i 4.
x=\frac{-4±\sqrt{16+128}}{2\times 4}
Pomnožite -16 i -8.
x=\frac{-4±\sqrt{144}}{2\times 4}
Saberite 16 i 128.
x=\frac{-4±12}{2\times 4}
Izračunajte kvadratni korijen od 144.
x=\frac{-4±12}{8}
Pomnožite 2 i 4.
x=\frac{8}{8}
Sada riješite jednačinu x=\frac{-4±12}{8} kada je ± plus. Saberite -4 i 12.
x=1
Podijelite 8 sa 8.
x=-\frac{16}{8}
Sada riješite jednačinu x=\frac{-4±12}{8} kada je ± minus. Oduzmite 12 od -4.
x=-2
Podijelite -16 sa 8.
x=1 x=-2
Jednačina je riješena.
4x^{2}+8x-4x=8
Oduzmite 4x s obje strane.
4x^{2}+4x=8
Kombinirajte 8x i -4x da biste dobili 4x.
\frac{4x^{2}+4x}{4}=\frac{8}{4}
Podijelite obje strane s 4.
x^{2}+\frac{4}{4}x=\frac{8}{4}
Dijelјenje sa 4 poništava množenje sa 4.
x^{2}+x=\frac{8}{4}
Podijelite 4 sa 4.
x^{2}+x=2
Podijelite 8 sa 4.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=2+\left(\frac{1}{2}\right)^{2}
Podijelite 1, koeficijent izraza x, sa 2 da biste dobili \frac{1}{2}. Zatim dodajte kvadrat od \frac{1}{2} na obje strane jednačine. Ovaj korak čini lijevu stranu jednačine savršenim kvadratom.
x^{2}+x+\frac{1}{4}=2+\frac{1}{4}
Izračunajte kvadrat od \frac{1}{2} tako što ćete izračunati kvadrat od brojioca i imenioca razlomka.
x^{2}+x+\frac{1}{4}=\frac{9}{4}
Saberite 2 i \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{9}{4}
Faktor x^{2}+x+\frac{1}{4}. Generalno, kada je x^{2}+bx+c savršen kvadrat, uvijek se može uračunati kao \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Izračunajte kvadratni korijen od obje strane jednačine.
x+\frac{1}{2}=\frac{3}{2} x+\frac{1}{2}=-\frac{3}{2}
Pojednostavite.
x=1 x=-2
Oduzmite \frac{1}{2} s obje strane jednačine.