Preskoči na glavni sadržaj
Riješite za x (complex solution)
Tick mark Image
Graf

Slični problemi iz web pretrage

Dijeliti

-5x^{2}+3x=3
Sve jednačine u obrascu ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna formula daje dva rješenja, jedno kada je ± sabiranje, a drugo kada je oduzimanje.
-5x^{2}+3x-3=3-3
Oduzmite 3 s obje strane jednačine.
-5x^{2}+3x-3=0
Oduzimanjem 3 od samog sebe ostaje 0.
x=\frac{-3±\sqrt{3^{2}-4\left(-5\right)\left(-3\right)}}{2\left(-5\right)}
Ova jednačina je u standardnom obliku: ax^{2}+bx+c=0. Zamijenite -5 i a, 3 i b, kao i -3 i c u kvadratnoj formuli, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-5\right)\left(-3\right)}}{2\left(-5\right)}
Izračunajte kvadrat od 3.
x=\frac{-3±\sqrt{9+20\left(-3\right)}}{2\left(-5\right)}
Pomnožite -4 i -5.
x=\frac{-3±\sqrt{9-60}}{2\left(-5\right)}
Pomnožite 20 i -3.
x=\frac{-3±\sqrt{-51}}{2\left(-5\right)}
Saberite 9 i -60.
x=\frac{-3±\sqrt{51}i}{2\left(-5\right)}
Izračunajte kvadratni korijen od -51.
x=\frac{-3±\sqrt{51}i}{-10}
Pomnožite 2 i -5.
x=\frac{-3+\sqrt{51}i}{-10}
Sada riješite jednačinu x=\frac{-3±\sqrt{51}i}{-10} kada je ± plus. Saberite -3 i i\sqrt{51}.
x=\frac{-\sqrt{51}i+3}{10}
Podijelite -3+i\sqrt{51} sa -10.
x=\frac{-\sqrt{51}i-3}{-10}
Sada riješite jednačinu x=\frac{-3±\sqrt{51}i}{-10} kada je ± minus. Oduzmite i\sqrt{51} od -3.
x=\frac{3+\sqrt{51}i}{10}
Podijelite -3-i\sqrt{51} sa -10.
x=\frac{-\sqrt{51}i+3}{10} x=\frac{3+\sqrt{51}i}{10}
Jednačina je riješena.
-5x^{2}+3x=3
Kvadratne jednačine kao što je ova mogu se riješiti dovršavanjem kvadrata. Da bi se dovršio kvadrat, jednačina mora biti u obliku x^{2}+bx=c.
\frac{-5x^{2}+3x}{-5}=\frac{3}{-5}
Podijelite obje strane s -5.
x^{2}+\frac{3}{-5}x=\frac{3}{-5}
Dijelјenje sa -5 poništava množenje sa -5.
x^{2}-\frac{3}{5}x=\frac{3}{-5}
Podijelite 3 sa -5.
x^{2}-\frac{3}{5}x=-\frac{3}{5}
Podijelite 3 sa -5.
x^{2}-\frac{3}{5}x+\left(-\frac{3}{10}\right)^{2}=-\frac{3}{5}+\left(-\frac{3}{10}\right)^{2}
Podijelite -\frac{3}{5}, koeficijent izraza x, sa 2 da biste dobili -\frac{3}{10}. Zatim dodajte kvadrat od -\frac{3}{10} na obje strane jednačine. Ovaj korak čini lijevu stranu jednačine savršenim kvadratom.
x^{2}-\frac{3}{5}x+\frac{9}{100}=-\frac{3}{5}+\frac{9}{100}
Izračunajte kvadrat od -\frac{3}{10} tako što ćete izračunati kvadrat od brojioca i imenioca razlomka.
x^{2}-\frac{3}{5}x+\frac{9}{100}=-\frac{51}{100}
Saberite -\frac{3}{5} i \frac{9}{100} tako što ćete pronaći zajednički imenilac i sabrati brojioce. Zatim svedite razlomak na najniže termine ukoliko je moguće.
\left(x-\frac{3}{10}\right)^{2}=-\frac{51}{100}
Faktor x^{2}-\frac{3}{5}x+\frac{9}{100}. Generalno, kada je x^{2}+bx+c savršen kvadrat, uvijek se može uračunati kao \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{10}\right)^{2}}=\sqrt{-\frac{51}{100}}
Izračunajte kvadratni korijen od obje strane jednačine.
x-\frac{3}{10}=\frac{\sqrt{51}i}{10} x-\frac{3}{10}=-\frac{\sqrt{51}i}{10}
Pojednostavite.
x=\frac{3+\sqrt{51}i}{10} x=\frac{-\sqrt{51}i+3}{10}
Dodajte \frac{3}{10} na obje strane jednačine.