Riješite za x
x=\frac{\sqrt{6}}{3}+1\approx 1,816496581
x=-\frac{\sqrt{6}}{3}+1\approx 0,183503419
Graf
Dijeliti
Kopirano u clipboard
3x^{2}-6x+1=0
Sve jednačine u obrascu ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna formula daje dva rješenja, jedno kada je ± sabiranje, a drugo kada je oduzimanje.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 3}}{2\times 3}
Ova jednačina je u standardnom obliku: ax^{2}+bx+c=0. Zamijenite 3 i a, -6 i b, kao i 1 i c u kvadratnoj formuli, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 3}}{2\times 3}
Izračunajte kvadrat od -6.
x=\frac{-\left(-6\right)±\sqrt{36-12}}{2\times 3}
Pomnožite -4 i 3.
x=\frac{-\left(-6\right)±\sqrt{24}}{2\times 3}
Saberite 36 i -12.
x=\frac{-\left(-6\right)±2\sqrt{6}}{2\times 3}
Izračunajte kvadratni korijen od 24.
x=\frac{6±2\sqrt{6}}{2\times 3}
Opozit broja -6 je 6.
x=\frac{6±2\sqrt{6}}{6}
Pomnožite 2 i 3.
x=\frac{2\sqrt{6}+6}{6}
Sada riješite jednačinu x=\frac{6±2\sqrt{6}}{6} kada je ± plus. Saberite 6 i 2\sqrt{6}.
x=\frac{\sqrt{6}}{3}+1
Podijelite 6+2\sqrt{6} sa 6.
x=\frac{6-2\sqrt{6}}{6}
Sada riješite jednačinu x=\frac{6±2\sqrt{6}}{6} kada je ± minus. Oduzmite 2\sqrt{6} od 6.
x=-\frac{\sqrt{6}}{3}+1
Podijelite 6-2\sqrt{6} sa 6.
x=\frac{\sqrt{6}}{3}+1 x=-\frac{\sqrt{6}}{3}+1
Jednačina je riješena.
3x^{2}-6x+1=0
Kvadratne jednačine kao što je ova mogu se riješiti dovršavanjem kvadrata. Da bi se dovršio kvadrat, jednačina mora biti u obliku x^{2}+bx=c.
3x^{2}-6x+1-1=-1
Oduzmite 1 s obje strane jednačine.
3x^{2}-6x=-1
Oduzimanjem 1 od samog sebe ostaje 0.
\frac{3x^{2}-6x}{3}=-\frac{1}{3}
Podijelite obje strane s 3.
x^{2}+\left(-\frac{6}{3}\right)x=-\frac{1}{3}
Dijelјenje sa 3 poništava množenje sa 3.
x^{2}-2x=-\frac{1}{3}
Podijelite -6 sa 3.
x^{2}-2x+1=-\frac{1}{3}+1
Podijelite -2, koeficijent izraza x, sa 2 da biste dobili -1. Zatim dodajte kvadrat od -1 na obje strane jednačine. Ovaj korak čini lijevu stranu jednačine savršenim kvadratom.
x^{2}-2x+1=\frac{2}{3}
Saberite -\frac{1}{3} i 1.
\left(x-1\right)^{2}=\frac{2}{3}
Faktorirajte x^{2}-2x+1. Uopćeno govoreći, kada je x^{2}+bx+c savršeni kvadrat, on se uvijek može faktorirati kao \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{2}{3}}
Izračunajte kvadratni korijen od obje strane jednačine.
x-1=\frac{\sqrt{6}}{3} x-1=-\frac{\sqrt{6}}{3}
Pojednostavite.
x=\frac{\sqrt{6}}{3}+1 x=-\frac{\sqrt{6}}{3}+1
Dodajte 1 na obje strane jednačine.
Primjeri
kvadratna jednacina
{ x } ^ { 2 } - 4 x - 5 = 0
trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednačina
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultana jednačina
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}