Preskoči na glavni sadržaj
Faktor
Tick mark Image
Procijeni
Tick mark Image
Graf

Slični problemi iz web pretrage

Dijeliti

2\left(x^{2}-4x-12\right)
Izbacite 2.
a+b=-4 ab=1\left(-12\right)=-12
Razmotrite x^{2}-4x-12. Faktorišite izraz grupisanjem. Prvo, izraz treba prepisati kao x^{2}+ax+bx-12. Da biste pronašli a i b, uspostavite sistem koji treba riješiti.
1,-12 2,-6 3,-4
Pošto je ab negativno, a a b ima suprotan znak. Pošto je a+b negativan, negativan broj ima veću apsolutnu vrijednost od pozitivnog. Navedite sve parove cijelih brojeva koji daju proizvod -12.
1-12=-11 2-6=-4 3-4=-1
Izračunajte sumu za svaki par.
a=-6 b=2
Rješenje je njihov par koji daje sumu -4.
\left(x^{2}-6x\right)+\left(2x-12\right)
Ponovo napišite x^{2}-4x-12 kao \left(x^{2}-6x\right)+\left(2x-12\right).
x\left(x-6\right)+2\left(x-6\right)
Isključite x u prvoj i 2 drugoj grupi.
\left(x-6\right)\left(x+2\right)
Izdvojite obični izraz x-6 koristeći svojstvo distribucije.
2\left(x-6\right)\left(x+2\right)
Ponovo napišite cijeli faktorirani izraz.
2x^{2}-8x-24=0
Kvadratni polinom se može faktorirati pomoću transformacije ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), pri čemu x_{1} i x_{2} predstavlјaju rješenja kvadratne jednačine ax^{2}+bx+c=0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\left(-24\right)}}{2\times 2}
Sve jednačine u obrascu ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna formula daje dva rješenja, jedno kada je ± sabiranje, a drugo kada je oduzimanje.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\left(-24\right)}}{2\times 2}
Izračunajte kvadrat od -8.
x=\frac{-\left(-8\right)±\sqrt{64-8\left(-24\right)}}{2\times 2}
Pomnožite -4 i 2.
x=\frac{-\left(-8\right)±\sqrt{64+192}}{2\times 2}
Pomnožite -8 i -24.
x=\frac{-\left(-8\right)±\sqrt{256}}{2\times 2}
Saberite 64 i 192.
x=\frac{-\left(-8\right)±16}{2\times 2}
Izračunajte kvadratni korijen od 256.
x=\frac{8±16}{2\times 2}
Opozit broja -8 je 8.
x=\frac{8±16}{4}
Pomnožite 2 i 2.
x=\frac{24}{4}
Sada riješite jednačinu x=\frac{8±16}{4} kada je ± plus. Saberite 8 i 16.
x=6
Podijelite 24 sa 4.
x=-\frac{8}{4}
Sada riješite jednačinu x=\frac{8±16}{4} kada je ± minus. Oduzmite 16 od 8.
x=-2
Podijelite -8 sa 4.
2x^{2}-8x-24=2\left(x-6\right)\left(x-\left(-2\right)\right)
Faktorirajte originalni izraz koristeći ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Zamijenite 6 sa x_{1} i -2 sa x_{2}.
2x^{2}-8x-24=2\left(x-6\right)\left(x+2\right)
Pojednostavite sve izraze koji imaju oblik p-\left(-q\right) u p+q.