Preskoči na glavni sadržaj
Faktor
Tick mark Image
Procijeni
Tick mark Image
Graf

Slični problemi iz web pretrage

Dijeliti

a+b=-5 ab=2\left(-3\right)=-6
Faktorišite izraz grupisanjem. Prvo, izraz treba prepisati kao 2x^{2}+ax+bx-3. Da biste pronašli a i b, uspostavite sistem koji treba riješiti.
1,-6 2,-3
Pošto je ab negativno, a a b ima suprotan znak. Pošto je a+b negativan, negativan broj ima veću apsolutnu vrijednost od pozitivnog. Navedite sve parove cijelih brojeva koji daju proizvod -6.
1-6=-5 2-3=-1
Izračunajte sumu za svaki par.
a=-6 b=1
Rješenje je njihov par koji daje sumu -5.
\left(2x^{2}-6x\right)+\left(x-3\right)
Ponovo napišite 2x^{2}-5x-3 kao \left(2x^{2}-6x\right)+\left(x-3\right).
2x\left(x-3\right)+x-3
Izdvojite 2x iz 2x^{2}-6x.
\left(x-3\right)\left(2x+1\right)
Izdvojite obični izraz x-3 koristeći svojstvo distribucije.
2x^{2}-5x-3=0
Kvadratni polinom se može faktorirati pomoću transformacije ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), pri čemu x_{1} i x_{2} predstavlјaju rješenja kvadratne jednačine ax^{2}+bx+c=0.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2\left(-3\right)}}{2\times 2}
Sve jednačine u obrascu ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna formula daje dva rješenja, jedno kada je ± sabiranje, a drugo kada je oduzimanje.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 2\left(-3\right)}}{2\times 2}
Izračunajte kvadrat od -5.
x=\frac{-\left(-5\right)±\sqrt{25-8\left(-3\right)}}{2\times 2}
Pomnožite -4 i 2.
x=\frac{-\left(-5\right)±\sqrt{25+24}}{2\times 2}
Pomnožite -8 i -3.
x=\frac{-\left(-5\right)±\sqrt{49}}{2\times 2}
Saberite 25 i 24.
x=\frac{-\left(-5\right)±7}{2\times 2}
Izračunajte kvadratni korijen od 49.
x=\frac{5±7}{2\times 2}
Opozit broja -5 je 5.
x=\frac{5±7}{4}
Pomnožite 2 i 2.
x=\frac{12}{4}
Sada riješite jednačinu x=\frac{5±7}{4} kada je ± plus. Saberite 5 i 7.
x=3
Podijelite 12 sa 4.
x=-\frac{2}{4}
Sada riješite jednačinu x=\frac{5±7}{4} kada je ± minus. Oduzmite 7 od 5.
x=-\frac{1}{2}
Svedite razlomak \frac{-2}{4} na najprostije elemente rastavlјanjem i kraćenjem 2.
2x^{2}-5x-3=2\left(x-3\right)\left(x-\left(-\frac{1}{2}\right)\right)
Faktorirajte originalni izraz koristeći ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Zamijenite 3 sa x_{1} i -\frac{1}{2} sa x_{2}.
2x^{2}-5x-3=2\left(x-3\right)\left(x+\frac{1}{2}\right)
Pojednostavite sve izraze koji imaju oblik p-\left(-q\right) u p+q.
2x^{2}-5x-3=2\left(x-3\right)\times \frac{2x+1}{2}
Saberite \frac{1}{2} i x tako što ćete pronaći zajednički imenilac i sabrati brojioce. Zatim svedite razlomak na najniže termine ukoliko je moguće.
2x^{2}-5x-3=\left(x-3\right)\left(2x+1\right)
Poništite najveći zajednički djelilac 2 u 2 i 2.