Riješite za x
x = -\frac{5}{2} = -2\frac{1}{2} = -2,5
x=-1
Graf
Dijeliti
Kopirano u clipboard
2x^{2}+15x-8x=-5
Oduzmite 8x s obje strane.
2x^{2}+7x=-5
Kombinirajte 15x i -8x da biste dobili 7x.
2x^{2}+7x+5=0
Dodajte 5 na obje strane.
a+b=7 ab=2\times 5=10
Da biste riješili jednadžbu, faktorišite lijevu stranu grupisanjem. Prvo, lijevu stranu treba prepisati kao 2x^{2}+ax+bx+5. Da biste pronašli a i b, uspostavite sistem koji treba riješiti.
1,10 2,5
Pošto je ab pozitivno, a a b ima isti znak. Pošto je a+b pozitivno, a a b su oba pozitivna. Navedite sve parove cijelih brojeva koji daju proizvod 10.
1+10=11 2+5=7
Izračunajte sumu za svaki par.
a=2 b=5
Rješenje je njihov par koji daje sumu 7.
\left(2x^{2}+2x\right)+\left(5x+5\right)
Ponovo napišite 2x^{2}+7x+5 kao \left(2x^{2}+2x\right)+\left(5x+5\right).
2x\left(x+1\right)+5\left(x+1\right)
Isključite 2x u prvoj i 5 drugoj grupi.
\left(x+1\right)\left(2x+5\right)
Izdvojite obični izraz x+1 koristeći svojstvo distribucije.
x=-1 x=-\frac{5}{2}
Da biste došli do rješenja jednadžbe, riješite x+1=0 i 2x+5=0.
2x^{2}+15x-8x=-5
Oduzmite 8x s obje strane.
2x^{2}+7x=-5
Kombinirajte 15x i -8x da biste dobili 7x.
2x^{2}+7x+5=0
Dodajte 5 na obje strane.
x=\frac{-7±\sqrt{7^{2}-4\times 2\times 5}}{2\times 2}
Ova jednačina je u standardnom obliku: ax^{2}+bx+c=0. Zamijenite 2 i a, 7 i b, kao i 5 i c u kvadratnoj formuli, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 2\times 5}}{2\times 2}
Izračunajte kvadrat od 7.
x=\frac{-7±\sqrt{49-8\times 5}}{2\times 2}
Pomnožite -4 i 2.
x=\frac{-7±\sqrt{49-40}}{2\times 2}
Pomnožite -8 i 5.
x=\frac{-7±\sqrt{9}}{2\times 2}
Saberite 49 i -40.
x=\frac{-7±3}{2\times 2}
Izračunajte kvadratni korijen od 9.
x=\frac{-7±3}{4}
Pomnožite 2 i 2.
x=-\frac{4}{4}
Sada riješite jednačinu x=\frac{-7±3}{4} kada je ± plus. Saberite -7 i 3.
x=-1
Podijelite -4 sa 4.
x=-\frac{10}{4}
Sada riješite jednačinu x=\frac{-7±3}{4} kada je ± minus. Oduzmite 3 od -7.
x=-\frac{5}{2}
Svedite razlomak \frac{-10}{4} na najprostije elemente rastavlјanjem i kraćenjem 2.
x=-1 x=-\frac{5}{2}
Jednačina je riješena.
2x^{2}+15x-8x=-5
Oduzmite 8x s obje strane.
2x^{2}+7x=-5
Kombinirajte 15x i -8x da biste dobili 7x.
\frac{2x^{2}+7x}{2}=-\frac{5}{2}
Podijelite obje strane s 2.
x^{2}+\frac{7}{2}x=-\frac{5}{2}
Dijelјenje sa 2 poništava množenje sa 2.
x^{2}+\frac{7}{2}x+\left(\frac{7}{4}\right)^{2}=-\frac{5}{2}+\left(\frac{7}{4}\right)^{2}
Podijelite \frac{7}{2}, koeficijent izraza x, sa 2 da biste dobili \frac{7}{4}. Zatim dodajte kvadrat od \frac{7}{4} na obje strane jednačine. Ovaj korak čini lijevu stranu jednačine savršenim kvadratom.
x^{2}+\frac{7}{2}x+\frac{49}{16}=-\frac{5}{2}+\frac{49}{16}
Izračunajte kvadrat od \frac{7}{4} tako što ćete izračunati kvadrat od brojioca i imenioca razlomka.
x^{2}+\frac{7}{2}x+\frac{49}{16}=\frac{9}{16}
Saberite -\frac{5}{2} i \frac{49}{16} tako što ćete pronaći zajednički imenilac i sabrati brojioce. Zatim svedite razlomak na najniže termine ukoliko je moguće.
\left(x+\frac{7}{4}\right)^{2}=\frac{9}{16}
Faktor x^{2}+\frac{7}{2}x+\frac{49}{16}. Generalno, kada je x^{2}+bx+c savršen kvadrat, uvijek se može uračunati kao \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Izračunajte kvadratni korijen od obje strane jednačine.
x+\frac{7}{4}=\frac{3}{4} x+\frac{7}{4}=-\frac{3}{4}
Pojednostavite.
x=-1 x=-\frac{5}{2}
Oduzmite \frac{7}{4} s obje strane jednačine.
Primjeri
kvadratna jednacina
{ x } ^ { 2 } - 4 x - 5 = 0
trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednačina
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultana jednačina
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}