Faktor
2\left(x-6\right)\left(x+11\right)
Procijeni
2\left(x-6\right)\left(x+11\right)
Graf
Dijeliti
Kopirano u clipboard
2\left(x^{2}+5x-66\right)
Izbacite 2.
a+b=5 ab=1\left(-66\right)=-66
Razmotrite x^{2}+5x-66. Faktorišite izraz grupisanjem. Prvo, izraz treba prepisati kao x^{2}+ax+bx-66. Da biste pronašli a i b, uspostavite sistem koji treba riješiti.
-1,66 -2,33 -3,22 -6,11
Pošto je ab negativno, a a b ima suprotan znak. Pošto je a+b pozitivno, pozitivan broj ima veću apsolutnu vrijednost od negativnog. Navedite sve parove cijelih brojeva koji daju proizvod -66.
-1+66=65 -2+33=31 -3+22=19 -6+11=5
Izračunajte sumu za svaki par.
a=-6 b=11
Rješenje je njihov par koji daje sumu 5.
\left(x^{2}-6x\right)+\left(11x-66\right)
Ponovo napišite x^{2}+5x-66 kao \left(x^{2}-6x\right)+\left(11x-66\right).
x\left(x-6\right)+11\left(x-6\right)
Isključite x u prvoj i 11 drugoj grupi.
\left(x-6\right)\left(x+11\right)
Izdvojite obični izraz x-6 koristeći svojstvo distribucije.
2\left(x-6\right)\left(x+11\right)
Ponovo napišite cijeli faktorirani izraz.
2x^{2}+10x-132=0
Kvadratni polinom se može faktorirati pomoću transformacije ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), pri čemu x_{1} i x_{2} predstavlјaju rješenja kvadratne jednačine ax^{2}+bx+c=0.
x=\frac{-10±\sqrt{10^{2}-4\times 2\left(-132\right)}}{2\times 2}
Sve jednačine u obrascu ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna formula daje dva rješenja, jedno kada je ± sabiranje, a drugo kada je oduzimanje.
x=\frac{-10±\sqrt{100-4\times 2\left(-132\right)}}{2\times 2}
Izračunajte kvadrat od 10.
x=\frac{-10±\sqrt{100-8\left(-132\right)}}{2\times 2}
Pomnožite -4 i 2.
x=\frac{-10±\sqrt{100+1056}}{2\times 2}
Pomnožite -8 i -132.
x=\frac{-10±\sqrt{1156}}{2\times 2}
Saberite 100 i 1056.
x=\frac{-10±34}{2\times 2}
Izračunajte kvadratni korijen od 1156.
x=\frac{-10±34}{4}
Pomnožite 2 i 2.
x=\frac{24}{4}
Sada riješite jednačinu x=\frac{-10±34}{4} kada je ± plus. Saberite -10 i 34.
x=6
Podijelite 24 sa 4.
x=-\frac{44}{4}
Sada riješite jednačinu x=\frac{-10±34}{4} kada je ± minus. Oduzmite 34 od -10.
x=-11
Podijelite -44 sa 4.
2x^{2}+10x-132=2\left(x-6\right)\left(x-\left(-11\right)\right)
Faktorirajte originalni izraz koristeći ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Zamijenite 6 sa x_{1} i -11 sa x_{2}.
2x^{2}+10x-132=2\left(x-6\right)\left(x+11\right)
Pojednostavite sve izraze koji imaju oblik p-\left(-q\right) u p+q.
Primjeri
kvadratna jednacina
{ x } ^ { 2 } - 4 x - 5 = 0
trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednačina
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultana jednačina
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}