Riješite za t
t\geq \frac{17}{19}
Dijeliti
Kopirano u clipboard
4t-6\leq 23\left(t-1\right)
Koristite distributivno svojstvo da biste pomnožili 2 sa 2t-3.
4t-6\leq 23t-23
Koristite distributivno svojstvo da biste pomnožili 23 sa t-1.
4t-6-23t\leq -23
Oduzmite 23t s obje strane.
-19t-6\leq -23
Kombinirajte 4t i -23t da biste dobili -19t.
-19t\leq -23+6
Dodajte 6 na obje strane.
-19t\leq -17
Saberite -23 i 6 da biste dobili -17.
t\geq \frac{-17}{-19}
Podijelite obje strane s -19. Pošto je -19 negativan, smjer nejednačine je promijenjen.
t\geq \frac{17}{19}
Razlomak \frac{-17}{-19} se može rastaviti na \frac{17}{19} tako što će se ukloniti znak negacije iz brojioca i imenioca.
Primjeri
kvadratna jednacina
{ x } ^ { 2 } - 4 x - 5 = 0
trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednačina
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultana jednačina
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}