Faktor
\left(x-2\right)\left(2x+1\right)
Procijeni
\left(x-2\right)\left(2x+1\right)
Graf
Dijeliti
Kopirano u clipboard
a+b=-3 ab=2\left(-2\right)=-4
Faktorišite izraz grupisanjem. Prvo, izraz treba prepisati kao 2x^{2}+ax+bx-2. Da biste pronašli a i b, uspostavite sistem koji treba riješiti.
1,-4 2,-2
Pošto je ab negativno, a a b ima suprotan znak. Pošto je a+b negativan, negativan broj ima veću apsolutnu vrijednost od pozitivnog. Navedite sve parove cijelih brojeva koji daju proizvod -4.
1-4=-3 2-2=0
Izračunajte sumu za svaki par.
a=-4 b=1
Rješenje je njihov par koji daje sumu -3.
\left(2x^{2}-4x\right)+\left(x-2\right)
Ponovo napišite 2x^{2}-3x-2 kao \left(2x^{2}-4x\right)+\left(x-2\right).
2x\left(x-2\right)+x-2
Izdvojite 2x iz 2x^{2}-4x.
\left(x-2\right)\left(2x+1\right)
Izdvojite obični izraz x-2 koristeći svojstvo distribucije.
2x^{2}-3x-2=0
Kvadratni polinom se može faktorirati pomoću transformacije ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), pri čemu x_{1} i x_{2} predstavlјaju rješenja kvadratne jednačine ax^{2}+bx+c=0.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-2\right)}}{2\times 2}
Sve jednačine u obrascu ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna formula daje dva rješenja, jedno kada je ± sabiranje, a drugo kada je oduzimanje.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-2\right)}}{2\times 2}
Izračunajte kvadrat od -3.
x=\frac{-\left(-3\right)±\sqrt{9-8\left(-2\right)}}{2\times 2}
Pomnožite -4 i 2.
x=\frac{-\left(-3\right)±\sqrt{9+16}}{2\times 2}
Pomnožite -8 i -2.
x=\frac{-\left(-3\right)±\sqrt{25}}{2\times 2}
Saberite 9 i 16.
x=\frac{-\left(-3\right)±5}{2\times 2}
Izračunajte kvadratni korijen od 25.
x=\frac{3±5}{2\times 2}
Opozit broja -3 je 3.
x=\frac{3±5}{4}
Pomnožite 2 i 2.
x=\frac{8}{4}
Sada riješite jednačinu x=\frac{3±5}{4} kada je ± plus. Saberite 3 i 5.
x=2
Podijelite 8 sa 4.
x=-\frac{2}{4}
Sada riješite jednačinu x=\frac{3±5}{4} kada je ± minus. Oduzmite 5 od 3.
x=-\frac{1}{2}
Svedite razlomak \frac{-2}{4} na najprostije elemente rastavlјanjem i kraćenjem 2.
2x^{2}-3x-2=2\left(x-2\right)\left(x-\left(-\frac{1}{2}\right)\right)
Faktorirajte originalni izraz koristeći ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Zamijenite 2 sa x_{1} i -\frac{1}{2} sa x_{2}.
2x^{2}-3x-2=2\left(x-2\right)\left(x+\frac{1}{2}\right)
Pojednostavite sve izraze koji imaju oblik p-\left(-q\right) u p+q.
2x^{2}-3x-2=2\left(x-2\right)\times \frac{2x+1}{2}
Saberite \frac{1}{2} i x tako što ćete pronaći zajednički imenilac i sabrati brojioce. Zatim svedite razlomak na najniže termine ukoliko je moguće.
2x^{2}-3x-2=\left(x-2\right)\left(2x+1\right)
Poništite najveći zajednički djelilac 2 u 2 i 2.
Primjeri
kvadratna jednacina
{ x } ^ { 2 } - 4 x - 5 = 0
trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednačina
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultana jednačina
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}