Preskoči na glavni sadržaj
Riješite za x (complex solution)
Tick mark Image
Graf

Slični problemi iz web pretrage

Dijeliti

2x^{2}=-10
Oduzmite 10 s obje strane. Bilo šta oduzeto od nule daje svoju negaciju.
x^{2}=\frac{-10}{2}
Podijelite obje strane s 2.
x^{2}=-5
Podijelite -10 sa 2 da biste dobili -5.
x=\sqrt{5}i x=-\sqrt{5}i
Jednačina je riješena.
2x^{2}+10=0
Kvadratne jednačine kao što je ova, sa terminom x^{2}, ali bez termina x, mogu se i riješiti pomoću kvadratne formule \frac{-b±\sqrt{b^{2}-4ac}}{2a} kada se stave u standardni oblik: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 2\times 10}}{2\times 2}
Ova jednačina je u standardnom obliku: ax^{2}+bx+c=0. Zamijenite 2 i a, 0 i b, kao i 10 i c u kvadratnoj formuli, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\times 10}}{2\times 2}
Izračunajte kvadrat od 0.
x=\frac{0±\sqrt{-8\times 10}}{2\times 2}
Pomnožite -4 i 2.
x=\frac{0±\sqrt{-80}}{2\times 2}
Pomnožite -8 i 10.
x=\frac{0±4\sqrt{5}i}{2\times 2}
Izračunajte kvadratni korijen od -80.
x=\frac{0±4\sqrt{5}i}{4}
Pomnožite 2 i 2.
x=\sqrt{5}i
Sada riješite jednačinu x=\frac{0±4\sqrt{5}i}{4} kada je ± plus.
x=-\sqrt{5}i
Sada riješite jednačinu x=\frac{0±4\sqrt{5}i}{4} kada je ± minus.
x=\sqrt{5}i x=-\sqrt{5}i
Jednačina je riješena.