Faktor
2y\left(2-x\right)\left(x+3\right)
Procijeni
2y\left(2-x\right)\left(x+3\right)
Dijeliti
Kopirano u clipboard
2\left(6y-xy-x^{2}y\right)
Izbacite 2.
y\left(6-x-x^{2}\right)
Razmotrite 6y-xy-x^{2}y. Izbacite y.
-x^{2}-x+6
Razmotrite 6-x-x^{2}. Prerasporedite jednačinu da biste je stavili u standardni oblik. Postavite termine redoslijedom od najvišeg do najnižeg stepena.
a+b=-1 ab=-6=-6
Faktorišite izraz grupisanjem. Prvo, izraz treba prepisati kao -x^{2}+ax+bx+6. Da biste pronašli a i b, uspostavite sistem koji treba riješiti.
1,-6 2,-3
Pošto je ab negativno, a a b ima suprotan znak. Pošto je a+b negativan, negativan broj ima veću apsolutnu vrijednost od pozitivnog. Navedite sve parove cijelih brojeva koji daju proizvod -6.
1-6=-5 2-3=-1
Izračunajte sumu za svaki par.
a=2 b=-3
Rješenje je njihov par koji daje sumu -1.
\left(-x^{2}+2x\right)+\left(-3x+6\right)
Ponovo napišite -x^{2}-x+6 kao \left(-x^{2}+2x\right)+\left(-3x+6\right).
x\left(-x+2\right)+3\left(-x+2\right)
Isključite x u prvoj i 3 drugoj grupi.
\left(-x+2\right)\left(x+3\right)
Izdvojite obični izraz -x+2 koristeći svojstvo distribucije.
2y\left(-x+2\right)\left(x+3\right)
Ponovo napišite cijeli faktorirani izraz.
Primjeri
kvadratna jednacina
{ x } ^ { 2 } - 4 x - 5 = 0
trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednačina
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultana jednačina
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}