Preskoči na glavni sadržaj
Faktor
Tick mark Image
Procijeni
Tick mark Image
Graf

Slični problemi iz web pretrage

Dijeliti

a+b=-1 ab=-6=-6
Faktorišite izraz grupisanjem. Prvo, izraz treba prepisati kao -x^{2}+ax+bx+6. Da biste pronašli a i b, uspostavite sistem koji treba riješiti.
1,-6 2,-3
Pošto je ab negativno, a a b ima suprotan znak. Pošto je a+b negativan, negativan broj ima veću apsolutnu vrijednost od pozitivnog. Navedite sve parove cijelih brojeva koji daju proizvod -6.
1-6=-5 2-3=-1
Izračunajte sumu za svaki par.
a=2 b=-3
Rješenje je njihov par koji daje sumu -1.
\left(-x^{2}+2x\right)+\left(-3x+6\right)
Ponovo napišite -x^{2}-x+6 kao \left(-x^{2}+2x\right)+\left(-3x+6\right).
x\left(-x+2\right)+3\left(-x+2\right)
Isključite x u prvoj i 3 drugoj grupi.
\left(-x+2\right)\left(x+3\right)
Izdvojite obični izraz -x+2 koristeći svojstvo distribucije.
-x^{2}-x+6=0
Kvadratni polinom se može faktorirati pomoću transformacije ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), pri čemu x_{1} i x_{2} predstavlјaju rješenja kvadratne jednačine ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\times 6}}{2\left(-1\right)}
Sve jednačine u obrascu ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna formula daje dva rješenja, jedno kada je ± sabiranje, a drugo kada je oduzimanje.
x=\frac{-\left(-1\right)±\sqrt{1+4\times 6}}{2\left(-1\right)}
Pomnožite -4 i -1.
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2\left(-1\right)}
Pomnožite 4 i 6.
x=\frac{-\left(-1\right)±\sqrt{25}}{2\left(-1\right)}
Saberite 1 i 24.
x=\frac{-\left(-1\right)±5}{2\left(-1\right)}
Izračunajte kvadratni korijen od 25.
x=\frac{1±5}{2\left(-1\right)}
Opozit broja -1 je 1.
x=\frac{1±5}{-2}
Pomnožite 2 i -1.
x=\frac{6}{-2}
Sada riješite jednačinu x=\frac{1±5}{-2} kada je ± plus. Saberite 1 i 5.
x=-3
Podijelite 6 sa -2.
x=-\frac{4}{-2}
Sada riješite jednačinu x=\frac{1±5}{-2} kada je ± minus. Oduzmite 5 od 1.
x=2
Podijelite -4 sa -2.
-x^{2}-x+6=-\left(x-\left(-3\right)\right)\left(x-2\right)
Faktorirajte originalni izraz koristeći ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Zamijenite -3 sa x_{1} i 2 sa x_{2}.
-x^{2}-x+6=-\left(x+3\right)\left(x-2\right)
Pojednostavite sve izraze koji imaju oblik p-\left(-q\right) u p+q.