Preskoči na glavni sadržaj
Procijeni
Tick mark Image
Razlikovanje u pogledu x
Tick mark Image
Graf

Slični problemi iz web pretrage

Dijeliti

\left(-8x^{4}\right)^{1}\times \frac{1}{-4x^{3}}
Koristite pravila eksponenata da biste pojednostavili izraz.
\left(-8\right)^{1}\left(x^{4}\right)^{1}\times \frac{1}{-4}\times \frac{1}{x^{3}}
Da biste podigli proizvod dva ili više brojeva na neki stepen, podignite svaki broj na taj stepen i izračunajte njihov proizvod.
\left(-8\right)^{1}\times \frac{1}{-4}\left(x^{4}\right)^{1}\times \frac{1}{x^{3}}
Koristite komutativno svojstvo množenja.
\left(-8\right)^{1}\times \frac{1}{-4}x^{4}x^{3\left(-1\right)}
Da biste podigli stepen na neki drugi stepen, pomnožite eksponente.
\left(-8\right)^{1}\times \frac{1}{-4}x^{4}x^{-3}
Pomnožite 3 i -1.
\left(-8\right)^{1}\times \frac{1}{-4}x^{4-3}
Da biste pomnožili stepene iste baze, saberite njihove eksponente.
\left(-8\right)^{1}\times \frac{1}{-4}x^{1}
Saberite eksponente 4 i -3.
-8\times \frac{1}{-4}x^{1}
Podignite -8 na stepen 1.
-8\left(-\frac{1}{4}\right)x^{1}
Podignite -4 na stepen -1.
2x^{1}
Pomnožite -8 i -\frac{1}{4}.
2x
Za bilo koji izraz t, t^{1}=t.
\frac{\left(-8\right)^{1}x^{4}}{\left(-4\right)^{1}x^{3}}
Koristite pravila eksponenata da biste pojednostavili izraz.
\frac{\left(-8\right)^{1}x^{4-3}}{\left(-4\right)^{1}}
Da biste podijelili stepene iste osnove, oduzmite eksponent imenioca od eksponenta brojioca.
\frac{\left(-8\right)^{1}x^{1}}{\left(-4\right)^{1}}
Oduzmite 3 od 4.
2x^{1}
Podijelite -8 sa -4.
2x
Za bilo koji izraz t, t^{1}=t.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(-\frac{8}{-4}\right)x^{4-3})
Da biste podijelili stepene iste osnove, oduzmite eksponent imenioca od eksponenta brojioca.
\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1})
Izvršite aritmetičku operaciju.
2x^{1-1}
Izvod polinoma predstavlјa zbir izvoda njegovih termina. Izvod termina konstante je 0. Izvod od ax^{n} je nax^{n-1}.
2x^{0}
Izvršite aritmetičku operaciju.
2\times 1
Za bilo koji izraz t izuzev 0, t^{0}=1.
2
Za bilo koji izraz t, t\times 1=t i 1t=t.