Procijeni
\frac{197459}{500}=394,918
Faktor
\frac{379 \cdot 521}{2 ^ {2} \cdot 5 ^ {3}} = 394\frac{459}{500} = 394,918
Dijeliti
Kopirano u clipboard
\frac{\frac{-\frac{3}{4}\times \frac{50+21}{25}}{\frac{3\times 5+3}{5}}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Pomnožite 2 i 25 da biste dobili 50.
\frac{\frac{-\frac{3}{4}\times \frac{71}{25}}{\frac{3\times 5+3}{5}}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Saberite 50 i 21 da biste dobili 71.
\frac{\frac{\frac{-3\times 71}{4\times 25}}{\frac{3\times 5+3}{5}}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Pomnožite -\frac{3}{4} i \frac{71}{25} tako što ćete pomnožiti brojilac s brojiocem i imenilac s imeniocem.
\frac{\frac{\frac{-213}{100}}{\frac{3\times 5+3}{5}}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Izvršite množenja u razlomku \frac{-3\times 71}{4\times 25}.
\frac{\frac{-\frac{213}{100}}{\frac{3\times 5+3}{5}}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Razlomak \frac{-213}{100} se može ponovo zapisati kao -\frac{213}{100} tako što će se ukloniti znak negacije.
\frac{\frac{-\frac{213}{100}}{\frac{15+3}{5}}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Pomnožite 3 i 5 da biste dobili 15.
\frac{\frac{-\frac{213}{100}}{\frac{18}{5}}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Saberite 15 i 3 da biste dobili 18.
\frac{-\frac{213}{100}\times \frac{5}{18}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Podijelite -\frac{213}{100} sa \frac{18}{5} tako što ćete pomnožiti -\frac{213}{100} recipročnom vrijednošću od \frac{18}{5}.
\frac{\frac{-213\times 5}{100\times 18}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Pomnožite -\frac{213}{100} i \frac{5}{18} tako što ćete pomnožiti brojilac s brojiocem i imenilac s imeniocem.
\frac{\frac{-1065}{1800}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Izvršite množenja u razlomku \frac{-213\times 5}{100\times 18}.
\frac{-\frac{71}{120}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Svedite razlomak \frac{-1065}{1800} na najprostije elemente rastavlјanjem i kraćenjem 15.
\frac{-\frac{71}{120}}{-\frac{2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Pomnožite 1 i 2 da biste dobili 2.
\frac{-\frac{71}{120}}{-\frac{3}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Saberite 2 i 1 da biste dobili 3.
-\frac{71}{120}\left(-\frac{2}{3}\right)\times \frac{50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Podijelite -\frac{71}{120} sa -\frac{3}{2} tako što ćete pomnožiti -\frac{71}{120} recipročnom vrijednošću od -\frac{3}{2}.
\frac{-71\left(-2\right)}{120\times 3}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Pomnožite -\frac{71}{120} i -\frac{2}{3} tako što ćete pomnožiti brojilac s brojiocem i imenilac s imeniocem.
\frac{142}{360}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Izvršite množenja u razlomku \frac{-71\left(-2\right)}{120\times 3}.
\frac{71}{180}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Svedite razlomak \frac{142}{360} na najprostije elemente rastavlјanjem i kraćenjem 2.
\frac{71}{180}\times \frac{50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Pomnožite 1 i 50 da biste dobili 50.
\frac{71}{180}\times \frac{71}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Saberite 50 i 21 da biste dobili 71.
\frac{71\times 71}{180\times 50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Pomnožite \frac{71}{180} i \frac{71}{50} tako što ćete pomnožiti brojilac s brojiocem i imenilac s imeniocem.
\frac{5041}{9000}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Izvršite množenja u razlomku \frac{71\times 71}{180\times 50}.
\frac{5041\left(-18\right)}{9000}-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Izrazite \frac{5041}{9000}\left(-18\right) kao jedan razlomak.
\frac{-90738}{9000}-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Pomnožite 5041 i -18 da biste dobili -90738.
-\frac{5041}{500}-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Svedite razlomak \frac{-90738}{9000} na najprostije elemente rastavlјanjem i kraćenjem 18.
-\frac{5041}{500}-4\times 25\left(-\frac{4\times 20+1}{20}\right)
Izračunajte -2 stepen od 2 i dobijte 4.
-\frac{5041}{500}-100\left(-\frac{4\times 20+1}{20}\right)
Pomnožite 4 i 25 da biste dobili 100.
-\frac{5041}{500}-100\left(-\frac{80+1}{20}\right)
Pomnožite 4 i 20 da biste dobili 80.
-\frac{5041}{500}-100\left(-\frac{81}{20}\right)
Saberite 80 i 1 da biste dobili 81.
-\frac{5041}{500}-\frac{100\left(-81\right)}{20}
Izrazite 100\left(-\frac{81}{20}\right) kao jedan razlomak.
-\frac{5041}{500}-\frac{-8100}{20}
Pomnožite 100 i -81 da biste dobili -8100.
-\frac{5041}{500}-\left(-405\right)
Podijelite -8100 sa 20 da biste dobili -405.
-\frac{5041}{500}+405
Opozit broja -405 je 405.
-\frac{5041}{500}+\frac{202500}{500}
Konvertirajte 405 u razlomak \frac{202500}{500}.
\frac{-5041+202500}{500}
Pošto -\frac{5041}{500} i \frac{202500}{500} imaju isti imenilac, saberite ih tako što ćete sabrati njihove brojioce.
\frac{197459}{500}
Saberite -5041 i 202500 da biste dobili 197459.
Primjeri
kvadratna jednacina
{ x } ^ { 2 } - 4 x - 5 = 0
trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednačina
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultana jednačina
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}