Procijeni
\frac{12x^{3}-24x^{2}-1}{x-2}
Razlikovanje u pogledu x
\frac{24x^{3}-96x^{2}+96x+1}{\left(x-2\right)^{2}}
Graf
Dijeliti
Kopirano u clipboard
\frac{12x^{2}\left(x-2\right)}{x-2}-\frac{1}{x-2}
Da biste izvršili zbrajanje ili oduzimanje izraza, rastavite ih kako bi im nazivnici bili isti. Pomnožite 12x^{2} i \frac{x-2}{x-2}.
\frac{12x^{2}\left(x-2\right)-1}{x-2}
Pošto \frac{12x^{2}\left(x-2\right)}{x-2} i \frac{1}{x-2} imaju isti imenilac, oduzmite ih tako što ćete oduzeti njihove brojioce.
\frac{12x^{3}-24x^{2}-1}{x-2}
Izvršite množenja u 12x^{2}\left(x-2\right)-1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{12x^{2}\left(x-2\right)}{x-2}-\frac{1}{x-2})
Da biste izvršili zbrajanje ili oduzimanje izraza, rastavite ih kako bi im nazivnici bili isti. Pomnožite 12x^{2} i \frac{x-2}{x-2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{12x^{2}\left(x-2\right)-1}{x-2})
Pošto \frac{12x^{2}\left(x-2\right)}{x-2} i \frac{1}{x-2} imaju isti imenilac, oduzmite ih tako što ćete oduzeti njihove brojioce.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{12x^{3}-24x^{2}-1}{x-2})
Izvršite množenja u 12x^{2}\left(x-2\right)-1.
\frac{\left(x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(12x^{3}-24x^{2}-1)-\left(12x^{3}-24x^{2}-1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-2)}{\left(x^{1}-2\right)^{2}}
Za bilo koje dvije funkcije koje se mogu razlikovati, izvedeni broj količnika dvije funkcije je imenilac puta izvedeni broj imenioca minus imenilac puta izvedeni broj imenioca, sve podijelјeno imeniocem na kvadrat.
\frac{\left(x^{1}-2\right)\left(3\times 12x^{3-1}+2\left(-24\right)x^{2-1}\right)-\left(12x^{3}-24x^{2}-1\right)x^{1-1}}{\left(x^{1}-2\right)^{2}}
Izvod polinoma predstavlјa zbir izvoda njegovih termina. Izvod termina konstante je 0. Izvod od ax^{n} je nax^{n-1}.
\frac{\left(x^{1}-2\right)\left(36x^{2}-48x^{1}\right)-\left(12x^{3}-24x^{2}-1\right)x^{0}}{\left(x^{1}-2\right)^{2}}
Pojednostavite.
\frac{x^{1}\times 36x^{2}+x^{1}\left(-48\right)x^{1}-2\times 36x^{2}-2\left(-48\right)x^{1}-\left(12x^{3}-24x^{2}-1\right)x^{0}}{\left(x^{1}-2\right)^{2}}
Pomnožite x^{1}-2 i 36x^{2}-48x^{1}.
\frac{x^{1}\times 36x^{2}+x^{1}\left(-48\right)x^{1}-2\times 36x^{2}-2\left(-48\right)x^{1}-\left(12x^{3}x^{0}-24x^{2}x^{0}-x^{0}\right)}{\left(x^{1}-2\right)^{2}}
Pomnožite 12x^{3}-24x^{2}-1 i x^{0}.
\frac{36x^{1+2}-48x^{1+1}-2\times 36x^{2}-2\left(-48\right)x^{1}-\left(12x^{3}-24x^{2}-x^{0}\right)}{\left(x^{1}-2\right)^{2}}
Da biste pomnožili stepene iste baze, saberite njihove eksponente.
\frac{36x^{3}-48x^{2}-72x^{2}+96x^{1}-\left(12x^{3}-24x^{2}-x^{0}\right)}{\left(x^{1}-2\right)^{2}}
Pojednostavite.
\frac{24x^{3}-24x^{2}-72x^{2}+96x^{1}-\left(-x^{0}\right)}{\left(x^{1}-2\right)^{2}}
Kombinirajte slične termine.
\frac{24x^{3}-24x^{2}-72x^{2}+96x-\left(-x^{0}\right)}{\left(x-2\right)^{2}}
Za bilo koji izraz t, t^{1}=t.
\frac{24x^{3}-24x^{2}-72x^{2}+96x-\left(-1\right)}{\left(x-2\right)^{2}}
Za bilo koji izraz t izuzev 0, t^{0}=1.
Primjeri
kvadratna jednacina
{ x } ^ { 2 } - 4 x - 5 = 0
trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednačina
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultana jednačina
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}