Preskoči na glavni sadržaj
Riješite za x
Tick mark Image
Graf

Slični problemi iz web pretrage

Dijeliti

x^{3}-x^{2}+\frac{1}{3}x-\frac{1}{27}-\left(\frac{2}{5}x-1\right)\left(2-x\right)-x\left(\frac{2}{5}x+3\right)=x^{2}\left(x-1\right)-\frac{1}{3}\left(2-x\right)
Koristite binomnu teoremu \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} da biste proširili \left(x-\frac{1}{3}\right)^{3}.
x^{3}-x^{2}+\frac{1}{3}x-\frac{1}{27}-\left(\frac{9}{5}x-\frac{2}{5}x^{2}-2\right)-x\left(\frac{2}{5}x+3\right)=x^{2}\left(x-1\right)-\frac{1}{3}\left(2-x\right)
Koristite svojstvo distributivnosti da biste pomnožili \frac{2}{5}x-1 s 2-x i kombinirali slične pojmove.
x^{3}-x^{2}+\frac{1}{3}x-\frac{1}{27}-\frac{9}{5}x+\frac{2}{5}x^{2}+2-x\left(\frac{2}{5}x+3\right)=x^{2}\left(x-1\right)-\frac{1}{3}\left(2-x\right)
Da biste pronašli suprotnu vrijednost od \frac{9}{5}x-\frac{2}{5}x^{2}-2, pronađite suprotnu vrijednost svakog izraza.
x^{3}-x^{2}-\frac{22}{15}x-\frac{1}{27}+\frac{2}{5}x^{2}+2-x\left(\frac{2}{5}x+3\right)=x^{2}\left(x-1\right)-\frac{1}{3}\left(2-x\right)
Kombinirajte \frac{1}{3}x i -\frac{9}{5}x da biste dobili -\frac{22}{15}x.
x^{3}-\frac{3}{5}x^{2}-\frac{22}{15}x-\frac{1}{27}+2-x\left(\frac{2}{5}x+3\right)=x^{2}\left(x-1\right)-\frac{1}{3}\left(2-x\right)
Kombinirajte -x^{2} i \frac{2}{5}x^{2} da biste dobili -\frac{3}{5}x^{2}.
x^{3}-\frac{3}{5}x^{2}-\frac{22}{15}x+\frac{53}{27}-x\left(\frac{2}{5}x+3\right)=x^{2}\left(x-1\right)-\frac{1}{3}\left(2-x\right)
Saberite -\frac{1}{27} i 2 da biste dobili \frac{53}{27}.
x^{3}-\frac{3}{5}x^{2}-\frac{22}{15}x+\frac{53}{27}-\left(\frac{2}{5}x^{2}+3x\right)=x^{2}\left(x-1\right)-\frac{1}{3}\left(2-x\right)
Koristite distributivno svojstvo da biste pomnožili x sa \frac{2}{5}x+3.
x^{3}-\frac{3}{5}x^{2}-\frac{22}{15}x+\frac{53}{27}-\frac{2}{5}x^{2}-3x=x^{2}\left(x-1\right)-\frac{1}{3}\left(2-x\right)
Da biste pronašli suprotnu vrijednost od \frac{2}{5}x^{2}+3x, pronađite suprotnu vrijednost svakog izraza.
x^{3}-x^{2}-\frac{22}{15}x+\frac{53}{27}-3x=x^{2}\left(x-1\right)-\frac{1}{3}\left(2-x\right)
Kombinirajte -\frac{3}{5}x^{2} i -\frac{2}{5}x^{2} da biste dobili -x^{2}.
x^{3}-x^{2}-\frac{67}{15}x+\frac{53}{27}=x^{2}\left(x-1\right)-\frac{1}{3}\left(2-x\right)
Kombinirajte -\frac{22}{15}x i -3x da biste dobili -\frac{67}{15}x.
x^{3}-x^{2}-\frac{67}{15}x+\frac{53}{27}=x^{3}-x^{2}-\frac{1}{3}\left(2-x\right)
Koristite distributivno svojstvo da biste pomnožili x^{2} sa x-1.
x^{3}-x^{2}-\frac{67}{15}x+\frac{53}{27}=x^{3}-x^{2}-\frac{2}{3}+\frac{1}{3}x
Koristite distributivno svojstvo da biste pomnožili -\frac{1}{3} sa 2-x.
x^{3}-x^{2}-\frac{67}{15}x+\frac{53}{27}-x^{3}=-x^{2}-\frac{2}{3}+\frac{1}{3}x
Oduzmite x^{3} s obje strane.
-x^{2}-\frac{67}{15}x+\frac{53}{27}=-x^{2}-\frac{2}{3}+\frac{1}{3}x
Kombinirajte x^{3} i -x^{3} da biste dobili 0.
-x^{2}-\frac{67}{15}x+\frac{53}{27}+x^{2}=-\frac{2}{3}+\frac{1}{3}x
Dodajte x^{2} na obje strane.
-\frac{67}{15}x+\frac{53}{27}=-\frac{2}{3}+\frac{1}{3}x
Kombinirajte -x^{2} i x^{2} da biste dobili 0.
-\frac{67}{15}x+\frac{53}{27}-\frac{1}{3}x=-\frac{2}{3}
Oduzmite \frac{1}{3}x s obje strane.
-\frac{24}{5}x+\frac{53}{27}=-\frac{2}{3}
Kombinirajte -\frac{67}{15}x i -\frac{1}{3}x da biste dobili -\frac{24}{5}x.
-\frac{24}{5}x=-\frac{2}{3}-\frac{53}{27}
Oduzmite \frac{53}{27} s obje strane.
-\frac{24}{5}x=-\frac{71}{27}
Oduzmite \frac{53}{27} od -\frac{2}{3} da biste dobili -\frac{71}{27}.
x=-\frac{71}{27}\left(-\frac{5}{24}\right)
Pomnožite obje strane s -\frac{5}{24}, recipročnom vrijednošću od -\frac{24}{5}.
x=\frac{355}{648}
Pomnožite -\frac{71}{27} i -\frac{5}{24} da biste dobili \frac{355}{648}.